The Effect of Filler Content and UltraPlast TP01 of Nypa Fruticans Fiber-Filled Polylactic Acid/Recycled Low Density Polyethylene Biocomposites on Tensile Properties and Morphology

2015 ◽  
Vol 54 (3) ◽  
pp. 253-258
Author(s):  
Mohd Syahmie Rasidi ◽  
Salmah Husseinsyah ◽  
Teh Pei Leng
2015 ◽  
Vol 754-755 ◽  
pp. 54-58 ◽  
Author(s):  
M. Syahmie Rasidi ◽  
H. Salmah ◽  
Pei Leng Teh ◽  
Hanafi Ismail

The main purpose of incorporating Nypa Fruticans (NF) into Polylactic Acid (PLA)/Recycled Low Density Polyethylene (rLDPE) biocomposites is to decrease costs and change the properties. Polyethylene–co–acrylic acid (PEAA) was used as a compatibilizer. The effect of NF content and PEAA on the mechanical properties and morphology of the biocomposites were investigated. Results show that the effect of NF content increased Young’s modulus but decreased the tensile strength and elngation at break of PLA/rLDPE/NF biocomposites. It was found that incorporation of compatibilizer (PEAA) increased the tensile strength and Young’s modulus but decreased the elongation at break of compatibilized biocomposites. Scanning electron microscopy (SEM) study of the tensile fracture surface of the biocomposites indicated that the presence of PEAA improved the interfacial interaction between Nypa Fruticans and LDPE matrix.


Author(s):  
Raed Ma’ali ◽  
Shadi Sawalha ◽  
Omar Surkhi ◽  
Amani Hamarsheh ◽  
Sabreen Yacoub ◽  
...  

Plastics are used in versatile applications including automobile, packaging, piping and house goods, these huge uses attribute in the consumption of the oil reserves and the emerged waste harm the environment when it disposed irregularly. Recycling of plastics is one of the realistic solutions to the aforementioned problems and to reduce production cost. However, the reduction in mechanical properties of recycled plastics limit their use and thus reinforced plastics become popular because of their high mechanical, physical and thermal properties. The effects of calcium carbonate content from 0 to 15 wt.% on the tensile properties of recycled low-density polyethylene (RLDPE) were tested, the addition of calcium carbonate particles up to 15 wt.% was found to enhance the tensile strength and modulus of elasticity of RLDPE samples. Three calcium carbonate particle sizes (80, 200 and 500 µm) were mixed with RLDPE to investigate the effect of particles size on the tensile properties of RLDPE, it was found that the addition of small filler particles resulted in a noticeable improvement of tensile strength and modulus of elasticity of RLDPE compared with large filler particles. It was also observed that the addition of stearic acid slightly improves tensile properties of RLDPE which may be related to improvement of the interfacial adhesion between the filler and RLDPE. The crystallization temperature and the degree of crystallinity of RLDPE were increased by the addition of 7.5 wt.% calcium carbonate particles because they act as nucleating agents.


Author(s):  
Maria Cecíllia Ramos de Araújo Veloso ◽  
Mário Vanoli Scatolino ◽  
Maria Margarida Boavida Pontes Gonçalves ◽  
Mara Lúcia Agostini Valle ◽  
Thiago de Paula Protásio ◽  
...  

2021 ◽  
pp. 50559
Author(s):  
Pamela Rodrigues Passos Severino ◽  
Natália Ferreira Braga ◽  
Guilherme Ferreira Morgado ◽  
Juliano Marini ◽  
Orestes Ferro ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2436
Author(s):  
Abubakar Sadiq Mohammed ◽  
Martina Meincken

Low-cost wood–plastic composites (WPCs) were developed from invasive trees and recycled low-density polyethylene. The aim was to produce affordable building materials for low-cost social housing in South Africa. Both raw materials are regarded as waste materials, and the subsequent product development adds value to the resources, while simultaneously reducing the waste stream. The production costs were minimised by utilising the entire biomass of Acacia saligna salvaged from clearing operations without any prior processing, and low-grade recycled low-density polyethylene to make WPCs without any additives. Different biomass/plastic ratios, particle sizes, and press settings were evaluated to determine the optimum processing parameters to obtain WPCs with adequate properties. The water absorption, dimensional stability, modulus of rupture, modulus of elasticity, tensile strength, and tensile moduli were improved at longer press times and higher temperatures for all blending ratios. This has been attributed to the crystallisation of the lignocellulose and thermally induced cross-linking in the polyethylene. An increased biomass ratio and particle size were positively correlated with water absorption and thickness swelling and inversely related with MOR, tensile strength, and density due to an incomplete encapsulation of the biomass by the plastic matrix. This study demonstrates the feasibility of utilising low-grade recycled polyethylene and the whole-tree biomass of A. saligna, without the need for pre-processing and the addition of expensive modifiers, to produce WPCs with properties that satisfy the minimum requirements for interior cladding or ceiling material.


Sign in / Sign up

Export Citation Format

Share Document