scholarly journals Effects of a ‘one film for 2 years’ system on the grain yield, water use efficiency and cost-benefit balance in dryland spring maize (Zea maysL.) on the Loess Plateau, China

2017 ◽  
Vol 64 (7) ◽  
pp. 939-952 ◽  
Author(s):  
Baoqing Chen ◽  
Changrong Yan ◽  
Sarah Garré ◽  
Xurong Mei ◽  
Enke Liu
Crop Science ◽  
2018 ◽  
Vol 58 (2) ◽  
pp. 853-862 ◽  
Author(s):  
Xiang Gao ◽  
Fengxue Gu ◽  
Xurong Mei ◽  
Weiping Hao ◽  
Haoru Li ◽  
...  

2015 ◽  
Vol 107 (6) ◽  
pp. 2059-2068 ◽  
Author(s):  
Yanlong Chen ◽  
Ting Liu ◽  
Xiaohong Tian ◽  
Xiaofeng Wang ◽  
Huilin Chen ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wen Lin ◽  
Wenzhao Liu ◽  
Qingwu Xue

Abstract To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1010
Author(s):  
Jian Luo ◽  
Zimeng Liang ◽  
Luoyan Xi ◽  
Yuncheng Liao ◽  
Yang Liu

The purpose of this study was to investigate whether combining plastic-covered ridge and furrow planting (RF) and supplemental irrigation based on measuring soil moisture (SIMSM) can increase the grain yield and water use efficiency (WUE) of wheat (Triticum aestivum L.) in irrigated fields of Loess Plateau, China. In 2016–2018, the experiment was conducted at Doukou experimental farm (34°36′ N, 108°52′ E) with two plant systems (RF and traditional planting (TF)) and three irrigation treatments (S1 and S2: SIMSM with a target relative soil water content of 85% and 100%, respectively). The results suggest that under the TF system, SIMSM decreased the grain yield and nitrogen utilization. The reason for this may be the local low precipitation. However, the combination of RF and S2 significantly increased the WUE, protein and wet gluten concentration in the grain. In addition, the grain yield of the RF plus S2 treatment was not significantly different than that of the traditional irrigation method. These results suggest that combining RF and SIMSM with a target relative soil water content of 100% is beneficial to the synergistic improvement of the wheat yield, the wheat quality, and the water and fertilizer use efficiency in irrigated fields on the Loess Plateau.


2005 ◽  
Vol 72 (3) ◽  
pp. 209-222 ◽  
Author(s):  
Yilong Huang ◽  
Liding Chen ◽  
Bojie Fu ◽  
Zhilin Huang ◽  
Jie Gong

Sign in / Sign up

Export Citation Format

Share Document