Unknown Resistive Torque Estimation of a Rotary Drilling System Based on Kalman Filter

2020 ◽  
pp. 1-12 ◽  
Author(s):  
R. Riane ◽  
M. Kidouche ◽  
R. Illoul ◽  
M. Z. Doghmane
2021 ◽  
Vol 11 (14) ◽  
pp. 6514
Author(s):  
Lu Wang ◽  
Yuanbiao Hu ◽  
Tao Wang ◽  
Baolin Liu

Fiber-optic gyroscopes (FOGs)-based Measurement While Drilling system (MWD) is a newly developed instrument to survey the borehole trajectory continuously and in real time. However, because of the strong vibration while drilling, the measurement accuracy of FOG-based MWD deteriorates. It is urgent to improve the measurement accuracy while drilling. Therefore, this paper proposes an innovative scheme for the vibration error of the FOG-based MWD. Firstly, the nonlinear error models for the FOGs and ACCs are established. Secondly, a 36-order Extended Kalman Filter (EKF) combined with a calibration method based on 24-position is designed to identify the coefficients in the error model. Moreover, in order to obtain a higher accurate error model, an iterative calibration method has been suggested to suppress calibration residuals. Finally, vibration experiments simulating the drilling vibration in the laboratory is implemented. Compared to the original data, compensated the linear error items, the error of 3D borehole trajectory can only be reduced by a ratio from 10% to 34%. While compensating for the nonlinear error items of the FOG-based MWD, the error of 3D borehole trajectory can be reduced by a ratio from 44.13% to 97.22%. In conclusion, compensation of the nonlinear error of FOG-based MWD could improve the trajectory survey accuracy under vibration.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3485 ◽  
Author(s):  
Dongdong Chen ◽  
Peijiang Yuan ◽  
Tianmiao Wang ◽  
Ying Cai ◽  
Haiyang Tang

To enhance the perpendicularity accuracy in the robotic drilling system, a normal sensor calibration method is proposed to identify the errors of the zero point and laser beam direction of laser displacement sensors simultaneously. The procedure of normal adjustment of the robotic drilling system is introduced firstly. Next the measurement model of the zero point and laser beam direction on a datum plane is constructed based on the principle of the distance measurement for laser displacement sensors. An extended Kalman filter algorithm is used to identify the sensor errors. Then the surface normal measurement and attitude adjustments are presented to ensure that the axis of the drill bit coincides with the normal at drilling point. Finally, simulations are conducted to study the performance of the proposed calibration method and experiments are carried out on a robotic drilling system. The simulation and experimental results show that the perpendicularity of the hole is within 0.2°. They also demonstrate that the proposed calibration method has high accuracy of parameter identification and lays a basis for high-precision perpendicularity accuracy of drilling in the robotic drilling system.


Author(s):  
Thomas Stoxreiter ◽  
Gary Portwood ◽  
Laurent Gerbaud ◽  
Olivier Seibel ◽  
Stefan Essl ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 258
Author(s):  
Hui Wei ◽  
Kui Xiang ◽  
Haibo Chen ◽  
Biwei Tang ◽  
Muye Pang

Adding damping such as viscoelastic element in series elastic actuators (SEA) can improve the force control bandwidth of the system and suppression of high frequency oscillations induced by the environment. Thanks to such advantages, series viscoelastic actuators (SVA) have recently gained increasing research interests from the community of robotic device design. Due to the inconvenience of mounting torque sensors, employing the viscoelastic elements to directly estimate the output torque is of great significance regarding the real-world applications of SVA. However, the nonlinearity and time-varying properties of viscoelastic materials would degrade the torque estimation accuracy. In such a case, it is paramount to simultaneously estimate the output torque state and viscoelastic model coefficients in order to enhance the torque estimation accuracy. To this end, this paper first completed the design of a rubber-based SVA device and used the Zenner linear viscoelastic model to model the viscoelastic element of the rubber. Subsequently, this paper proposed a dual extended Kalman filter- (DEFK) based torque estimation method to estimate the output torque and viscoelastic model coefficients simultaneously. The noisy observations of two Kalman filters were provided by motor current-based estimated torque. Moreover, the dynamic friction of harmonic drive of the designed SVA was modeled and compensated to enhance the reliability of current-based torque estimation. Finally, a number of experiments were carried out on SVA, and the experimental results confirmed the DEFK effectiveness of improving torque estimation accuracy compared to only-used rubber and only-used motor current torque estimation methods. Thus, the proposed method could be considered as an effective alternative approach of torque estimation for SVA.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Chien-Chih Weng ◽  
Mansour Karkoub ◽  
Wen-Shyong Yu ◽  
Ming-Guo Her ◽  
Hsuan-Yi Chen

Abstract Active and passive control techniques have been devised over the years to mitigate the effect of vibrations on drill-string life with varying degrees of success. Here, it is proposed to design a robust trajectory tracking controller, which ultimately forces the rotary table and the drill-bit to move with the same speed (speed synchronization), hence reducing/eliminating torsional vibrations from the drill pipes. A model of the rotary drilling system, which includes torsional stick-slip, is first developed; then, an integral sliding mode control with time-varying exponent (ISMC-TVE) scheme is developed such that the bit motion tracks that of the rotary table to mitigate the effects of the induced vibrations. The ISMC-TVE is able to control the transient stage of the drill-string system’s response, maintain the system in the sliding state even under abrupt or existing external disturbances, and guarantee asymptotic stability of the rotary drilling system. The Lyapunov stability theorem is used here to analyze the performance of the closed-loop system, and the simulation results showed that the ISMC-TVE law is capable of accurately synchronizing the bit and rotary table speeds.


Sign in / Sign up

Export Citation Format

Share Document