scholarly journals Use of elicitors to enhance or activate the antibiotic production in streptomyces

Author(s):  
Gongli Zong ◽  
Jiafang Fu ◽  
Peipei Zhang ◽  
Wenchi Zhang ◽  
Yan Xu ◽  
...  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Karin Holmfeldt ◽  
Emelie Nilsson ◽  
Domenico Simone ◽  
Margarita Lopez-Fernandez ◽  
Xiaofen Wu ◽  
...  

AbstractThe deep biosphere contains members from all three domains of life along with viruses. Here we investigate the deep terrestrial virosphere by sequencing community nucleic acids from three groundwaters of contrasting chemistries, origins, and ages. These viromes constitute a highly unique community compared to other environmental viromes and sequenced viral isolates. Viral host prediction suggests that many of the viruses are associated with Firmicutes and Patescibacteria, a superphylum lacking previously described active viruses. RNA transcript-based activity implies viral predation in the shallower marine water-fed groundwater, while the deeper and more oligotrophic waters appear to be in ‘metabolic standby’. Viral encoded antibiotic production and resistance systems suggest competition and antagonistic interactions. The data demonstrate a viral community with a wide range of predicted hosts that mediates nutrient recycling to support a higher microbial turnover than previously anticipated. This suggests the presence of ‘kill-the-winner’ oscillations creating slow motion ‘boom and burst’ cycles.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 424
Author(s):  
Osama G. Mohamed ◽  
Sadaf Dorandish ◽  
Rebecca Lindow ◽  
Megan Steltz ◽  
Ifrah Shoukat ◽  
...  

The antibiotic-resistant bacteria-associated infections are a major global healthcare threat. New classes of antimicrobial compounds are urgently needed as the frequency of infections caused by multidrug-resistant microbes continues to rise. Recent metagenomic data have demonstrated that there is still biosynthetic potential encoded in but transcriptionally silent in cultivatable bacterial genomes. However, the culture conditions required to identify and express silent biosynthetic gene clusters that yield natural products with antimicrobial activity are largely unknown. Here, we describe a new antibiotic discovery scheme, dubbed the modified crowded plate technique (mCPT), that utilizes complex microbial interactions to elicit antimicrobial production from otherwise silent biosynthetic gene clusters. Using the mCPT as part of the antibiotic crowdsourcing educational program Tiny Earth®, we isolated over 1400 antibiotic-producing microbes, including 62, showing activity against multidrug-resistant pathogens. The natural product extracts generated from six microbial isolates showed potent activity against vancomycin-intermediate resistant Staphylococcus aureus. We utilized a targeted approach that coupled mass spectrometry data with bioactivity, yielding a new macrolactone class of metabolite, desertomycin H. In this study, we successfully demonstrate a concept that significantly increased our ability to quickly and efficiently identify microbes capable of the silent antibiotic production.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Noriyasu Shikura ◽  
Emmanuelle Darbon ◽  
Catherine Esnault ◽  
Ariane Deniset-Besseau ◽  
Delin Xu ◽  
...  

In Streptomyces, antibiotic biosynthesis is triggered in phosphate limitation that is usually correlated with energetic stress. Polyphosphates constitute an important reservoir of phosphate and energy and a better understanding of their role in the regulation of antibiotic biosynthesis is of crucial importance. We previously characterized a gene, SLI_4384/ppk, encoding a polyphosphate kinase, whose disruption greatly enhanced the weak antibiotic production of Streptomyces lividans. In the condition of energetic stress, Ppk utilizes polyP as phosphate and energy donor, to generate ATP from ADP. In this paper, we established that ppk is co-transcribed with its two downstream genes, SLI_4383, encoding a phosin called PptA possessing a CHAD domain constituting a polyphosphate binding module and SLI_4382 encoding a nudix hydrolase. The expression of the ppk/pptA/SLI_4382 operon was shown to be under the positive control of the two-component system PhoR/PhoP and thus mainly expressed in condition of phosphate limitation. However, pptA and SLI_4382 can also be transcribed alone from their own promoter. The deletion of pptA resulted into earlier and stronger actinorhodin production and lower lipid content than the disruption of ppk, whereas the deletion of SLI_4382 had no obvious phenotypical consequences. The disruption of ppk was shown to have a polar effect on the expression of pptA, suggesting that the phenotype of the ppk mutant might be linked, at least in part, to the weak expression of pptA in this strain. Interestingly, the expression of phoR/phoP and that of the genes of the pho regulon involved in phosphate supply or saving were strongly up-regulated in pptA and ppk mutants, revealing that both mutants suffer from phosphate stress. Considering the presence of a polyphosphate binding module in PptA, but absence of similarities between PptA and known exo-polyphosphatases, we proposed that PptA constitutes an accessory factor for exopolyphosphatases or general phosphatases involved in the degradation of polyphosphates into phosphate.


1995 ◽  
Vol 78 (2) ◽  
pp. 97-108 ◽  
Author(s):  
C. Leifert ◽  
H. Li ◽  
Siripun Chidburee ◽  
S. Hampson ◽  
Suzanne Workman ◽  
...  

1997 ◽  
Vol 43 (12) ◽  
pp. 1118-1125 ◽  
Author(s):  
Martine Aubert ◽  
Elisabeth Weber ◽  
Brigitte Gintz ◽  
Bernard Decaris ◽  
Keith F. Chater

The deduced product of the spa2 gene of Streptomyces ambofaciens is a homologue of RspA, involved in stationary-phase σs factor regulation in Escherichia coli. This suggests that Spa2 could play a part in stationary-phase-associated differentiation in S. ambofaciens. The disruption of spa2 led to reductions in aerial mycelial development and associated spore pigmentation. The mutant phenotype reverted to the wild-type phenotype when the disruption construct spontaneously excised. The spa2 disruption had no detectable effect on growth rates in different media or antibiotic production and resistance. When spa2 was placed on a multicopy plasmid, a severe defect in formation and pigmentation of aerial mycelium resulted. These results strongly suggest that Spa2 is involved in a complex manner in the morphological differentiation process.Key words: Streptomyces, differentiation, stationary-phase regulator.


1979 ◽  
Vol 42 (6) ◽  
pp. 596-602 ◽  
Author(s):  
D. A. Hopwood

Sign in / Sign up

Export Citation Format

Share Document