Inactivation or amplification of the spa2 gene, encoding a potential stationary-phase regulator, affects differentiation in Streptomyces ambofaciens

1997 ◽  
Vol 43 (12) ◽  
pp. 1118-1125 ◽  
Author(s):  
Martine Aubert ◽  
Elisabeth Weber ◽  
Brigitte Gintz ◽  
Bernard Decaris ◽  
Keith F. Chater

The deduced product of the spa2 gene of Streptomyces ambofaciens is a homologue of RspA, involved in stationary-phase σs factor regulation in Escherichia coli. This suggests that Spa2 could play a part in stationary-phase-associated differentiation in S. ambofaciens. The disruption of spa2 led to reductions in aerial mycelial development and associated spore pigmentation. The mutant phenotype reverted to the wild-type phenotype when the disruption construct spontaneously excised. The spa2 disruption had no detectable effect on growth rates in different media or antibiotic production and resistance. When spa2 was placed on a multicopy plasmid, a severe defect in formation and pigmentation of aerial mycelium resulted. These results strongly suggest that Spa2 is involved in a complex manner in the morphological differentiation process.Key words: Streptomyces, differentiation, stationary-phase regulator.


1988 ◽  
Vol 235 (1279) ◽  
pp. 121-138 ◽  

Streptomycetes are soil bacteria that differ from the genetically well-known Escherichia coli in two striking characteristics. (1) Instead of consisting of an alternation of growth and fission of morphologically simple, undifferentiated rods, the streptomycete life cycle involves the formation of a system of elongated, branching hyphae which, after a period of vegetative growth, respond to specific signals by producing specialized spore-bearing structures. (2) The streptomycetes produce an unrivalled range of chemically diverse ‘secondary metabolites’, which we recognize as antibiotics, herbicides and pharmacologically active molecules, and which presumably play an important role in the streptomycete life cycle in nature. This ‘physiological’ differentiation is often tem­porally associated with the morphological differentiation of sporulation and there are common elements in the regulation of the two sets of processes. In the model system provided by Streptomyces coelicolor A3(2), the isolation of several whole clusters of linked antibiotic biosynthetic pathway genes, and some key regulatory genes involved in sporulation, has made it possible to study the basis for the switching on and off of particular sets of genes during morphological and ‘physiological’ differen­tiation. Genetic analysis clearly reveals a regulatory cascade operating at several levels in a ‘physiological’ branch of the differentiation control system. At the lowest level, within individual clusters of antibiotic biosynthesis genes are genes with a role as activators of the structural genes for the pathway enzymes, and also resistance genes. It is attractive to speculate that the latter play a dual role: protecting the organism from self-destruction by its own potentially lethal product, and forming an essential component of a regulatory circuit that activates the biosyn­thetic genes, thus ensuring that resistance is established before any antibiotic is made. A next higher level of regulation is revealed by the isolation of mutations in a gene ( afsB ) required for expression (probably at the level of transcription) of all five known secondary metabolic pathways in the organism. At a higher level still, the bldA gene, whose product seems to be a tRNA essential to translate the rare (in high [G + C] Streptomyces DNA) TTA leucine codon, controls or influences the whole gamut of morphological and ‘physiological’ differentiation, because bldA mutants fail to produce either secondary metabolites or aerial mycelium and spores, while growing normally in the vegetative phase. Thus a decision to switch from vegetative growth to the secondary phase of colonial development may be taken at the level of translation. In the ‘morphological’ branch of the proposed regulatory cascade, a key gene is whiG whose product, essential for the earliest known step in the metamorphosis of aerial hyphae into spore chains, appears to be an RNA polymerase sigma factor which is not needed for transcription of vegetative genes, but seems to control, at the level of transcription, the decision to sporulate.



2006 ◽  
Vol 188 (24) ◽  
pp. 8368-8375 ◽  
Author(s):  
Wencheng Li ◽  
Xin Ying ◽  
Yuzheng Guo ◽  
Zhen Yu ◽  
Xiufen Zhou ◽  
...  

ABSTRACT SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification of the open reading frame SCO5582 as nsdA, a gene n egatively affecting S treptomyces d ifferentiation. The disruption of chromosomal nsdA caused the overproduction of spores and of three of four known S. coelicolor antibiotics of quite different chemical types. In at least one case (that of actinorhodin), this was correlated with premature expression of a pathway-specific regulatory gene (actII-orf4), implying that nsdA in the wild-type strain indirectly repressed the expression of the actinorhodin biosynthesis cluster. nsdA expression was up-regulated upon aerial mycelium initiation and was strongest in the aerial mycelium. NsdA has DUF921, a Streptomyces protein domain of unknown function and a conserved SXR site. A site-directed mutation (S458A) in this site in NsdA abolished its function. Blast searching showed that NsdA homologues are present in some Streptomyces genomes. Outside of streptomycetes, NsdA-like proteins have been found in several actinomycetes. The disruption of the nsdA-like gene SCO4114 had no obvious phenotypic effects on S. coelicolor. The nsdA orthologue SAV2652 in S. avermitilis could complement the S. coelicolor nsdA-null mutant phenotype.



2003 ◽  
Vol 185 (1) ◽  
pp. 386-386 ◽  
Author(s):  
Ikuo Kojima ◽  
Kano Kasuga ◽  
Masayuki Kobayashi ◽  
Akira Fukasawa ◽  
Satoshi Mizuno ◽  
...  


2004 ◽  
Vol 186 (11) ◽  
pp. 3570-3577 ◽  
Author(s):  
Amy M. Gehring ◽  
Stephanie T. Wang ◽  
Daniel B. Kearns ◽  
Narie Yoo Storer ◽  
Richard Losick

ABSTRACT Filamentous soil bacteria of the genus Streptomyces carry out complex developmental cycles that result in sporulation and production of numerous secondary metabolites with pharmaceutically important activities. To further characterize the molecular basis of these developmental events, we screened for mutants of Streptomyces coelicolor that exhibit aberrant morphological differentiation and/or secondary metabolite production. On the basis of this screening analysis and the subsequent complementation analysis of the mutants obtained we assigned developmental roles to a gene involved in methionine biosynthesis (metH) and two previously uncharacterized genes (SCO6938 and SCO2525) and we reidentified two previously described developmental genes (bldA and bldM). In contrast to most previously studied genes involved in development, the genes newly identified in the present study all appear to encode biosynthetic enzymes instead of regulatory proteins. The MetH methionine synthase appears to be required for conversion of aerial hyphae into chains of spores, SCO6938 is a probable acyl coenzyme A dehydrogenase that contributes to the proper timing of aerial mycelium formation and antibiotic production, and SCO2525 is a putative methyltransferase that influences various aspects of colony growth and development.



2005 ◽  
Vol 187 (9) ◽  
pp. 2957-2966 ◽  
Author(s):  
Dae-Wi Kim ◽  
Keith Chater ◽  
Kye-Joon Lee ◽  
Andy Hesketh

ABSTRACT The extracellular proteome of Streptomyces coelicolor grown in a liquid medium was analyzed by using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight peptide mass fingerprint analysis. Culture supernatants became protein rich only after rapid growth had been completed, supporting the idea that protein secretion is largely a stationary phase phenomenon. Out of about 600 protein spots observed, 72 were characterized. The products of 47 genes were identified, with only 11 examples predicted to be secreted proteins. Mutation in bldA, previously known to impair the stationary phase processes of antibiotic production and morphological differentiation, also induced changes in the extracellular proteome, revealing even greater pleiotropy in the bldA phenotype than previously known. Four proteins increased in abundance in the bldA mutant, while the products of 11 genes, including four secreted proteins, were severely down-regulated. Although bldA encodes the only tRNA capable of efficiently translating the rare UUA (leucine) codon, none of the latter group of genes contains an in-frame TTA. SCO0762, a serine-protease inhibitor belonging to the Streptomyces subtilisin inhibitor family implicated in differentiation in other streptomycetes, was completely absent from the bldA mutant. This dependence was shown to be mediated via the TTA-containing regulatory gene adpA, also known as bldH, a developmental gene that is responsible for the effects of bldA on differentiation. Mutation of the SCO0762 gene abolished detectable trypsin-protease inhibitory activity but did not result in any obvious morphological defects.



2002 ◽  
Vol 184 (23) ◽  
pp. 6417-6423 ◽  
Author(s):  
Ikuo Kojima ◽  
Kano Kasuga ◽  
Masayuki Kobayashi ◽  
Akira Fukasawa ◽  
Satoshi Mizuno ◽  
...  

ABSTRACT The occurrence of pleiotropic mutants that are defective in both antibiotic production and aerial mycelium formation is peculiar to streptomycetes. Pleiotropic mutant KSB was isolated from wild-type Streptomyces kasugaensis A1R6, which produces kasugamycin, an antifungal aminoglycoside antibiotic. A 9.3-kb DNA fragment was cloned from the chromosomal DNA of strain A1R6 by complementary restoration of kasugamycin production and aerial hypha formation to mutant KSB. Complementation experiments with deletion plasmids and subsequent DNA analysis indicated that orf5, encoding 90 amino acids, was responsible for the restoration. A protein homology search revealed that orf5 was a homolog of rpoZ, the gene that is known to encode RNA polymerase subunit omega (ω), thus leading to the conclusion that orf5 was rpoZ in S. kasugaensis. The pleiotropy of mutant KSB was attributed to a 2-bp frameshift deletion in the rpoZ region of mutant KSB, which probably resulted in a truncated, incomplete ω of 47 amino acids. Furthermore, rpoZ-disrupted mutant R6D4 obtained from strain A1R6 by insertion of Tn5 aphII into the middle of the rpoZ-coding region produced neither kasugamycin nor aerial mycelia, similar to mutant KSB. When rpoZ of S. kasugaensis and Streptomyces coelicolor, whose deduced products differed in the sixth amino acid residue, were introduced into mutant R6D4 via a plasmid, both transformants produced kasugamycin and aerial hyphae without significant differences. This study established that rpoZ is required for kasugamycin production and aerial mycelium formation in S. kasugaensis and responsible for pleiotropy.



2010 ◽  
Vol 192 (12) ◽  
pp. 3043-3054 ◽  
Author(s):  
Maria-Magdalena Patru ◽  
Martin S. Pavelka

ABSTRACT Class A penicillin-binding proteins (PBPs) are large, bifunctional proteins that are responsible for glycan chain assembly and peptide cross-linking of bacterial peptidoglycan. Bacteria in the genus Mycobacterium have been reported to have only two class A PBPs, PonA1 and PonA2, that are encoded in their genomes. We report here that the genomes of Mycobacterium smegmatis and other soil mycobacteria contain an additional gene encoding a third class A penicillin-binding protein, PonA3, which is a paralog of PonA2. Both the PonA2 and PonA3 proteins contain a penicillin-binding protein and serine/threonine protein kinase-associated (PASTA) domain that we propose may be involved in sensing the cell cycle and a C-terminal proline-rich region (PRR) that may have a role in protein-protein or protein-carbohydrate interactions. We show here that an M. smegmatis ΔponA2 mutant has an unusual antibiotic susceptibility profile, exhibits a spherical morphology and an altered cell surface in stationary phase, and is defective for stationary-phase survival and recovery from anaerobic culture. In contrast, a ΔponA3 mutant has no discernible phenotype under laboratory conditions. We demonstrate that PonA2 and PonA3 can bind penicillin and that PonA3 can partially substitute for PonA2 when ponA3 is expressed from a constitutive promoter on a multicopy plasmid. Our studies suggest that PonA2 is involved in adaptation to periods of nonreplication in response to starvation or anaerobiosis and that PonA3 may have a similar role. However, the regulation of PonA3 is likely different, suggesting that its importance could be related to stresses encountered in the environmental niches occupied by M. smegmatis and other soil-dwelling mycobacteria.



2007 ◽  
Vol 189 (11) ◽  
pp. 4315-4319 ◽  
Author(s):  
Seung-Hoon Kang ◽  
Jianqiang Huang ◽  
Han-Na Lee ◽  
Yoon-Ah Hur ◽  
Stanley N. Cohen ◽  
...  

ABSTRACT Using Streptomyces coelicolor microarrays to discover regulators of gene expression in other Streptomyces species, we identified wblA, a whiB-like gene encoding a putative transcription factor, as a down-regulator of doxorubicin biosynthesis in Streptomyces peucetius. Further analysis revealed that wblA functions pleiotropically to control antibiotic production and morphological differentiation in streptomycetes. Our results reveal a novel biological role for wblA and show the utility of interspecies microarray analysis for the investigation of streptomycete gene expression.



Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 294
Author(s):  
Thunyarat Surasiang ◽  
Chalongrat Noree

Asparagine synthetase deficiency (ASD) has been found to be caused by certain mutations in the gene encoding human asparagine synthetase (ASNS). Among reported mutations, A6E mutation showed the greatest reduction in ASNS abundance. However, the effect of A6E mutation has not yet been tested with yeast asparagine synthetase (Asn1/2p). Here, we constructed a yeast strain by deleting ASN2 from its genome, introducing the A6E mutation codon to ASN1, along with GFP downstream of ASN1. Our mutant yeast construct showed a noticeable decrease of Asn1p(A6E)-GFP levels as compared to the control yeast expressing Asn1p(WT)-GFP. At the stationary phase, the A6E mutation also markedly lowered the assembly frequency of the enzyme. In contrast to Asn1p(WT)-GFP, Asn1p(A6E)-GFP was insensitive to changes in the intracellular energy levels upon treatment with sodium azide during the log phase or fresh glucose at the stationary phase. Our study has confirmed that the effect of A6E mutation on protein expression levels of asparagine synthetase is common in both unicellular and multicellular eukaryotes, suggesting that yeast could be a model of ASD. Furthermore, A6E mutation could be introduced to the ASNS gene of acute lymphoblastic leukemia patients to inhibit the upregulation of ASNS by cancer cells, reducing the risk of developing resistance to the asparaginase treatment.



1990 ◽  
Vol 265 (18) ◽  
pp. 10574-10581
Author(s):  
J U Jung ◽  
C Gutierrez ◽  
F Martin ◽  
M Ardourel ◽  
M Villarejo


Sign in / Sign up

Export Citation Format

Share Document