Estimating the direction of source magnetisation through comparison of pseudogravity and total gradient

2019 ◽  
Vol 50 (2) ◽  
pp. 193-209
Author(s):  
Mohammad Ehsan Hekmatian
Keyword(s):  
2019 ◽  
Author(s):  
Maurizio Milano ◽  
Maurizio Fedi ◽  
J. Derek Fairhead

Abstract. In the European region, the magnetic field at satellite altitudes (~ 350 km) is mainly defined by a long-wavelength magnetic-low called here the Central Europe Magnetic Low (CEML), located to the southwest of the Trans European Suture Zone (TESZ). We studied this area by a joint analysis of the magnetic and total gradient (∇T) anomaly maps, for a range of different altitudes of 5 km, 100 km and 350 km. Tests on synthetic models showed the usefulness of the joint analysis at various altitudes to identify reverse dipolar anomalies and to characterize areas in which magnetization is weak. By this way we identified areas where either reversely or normally magnetized sources are locally dominant. At a European scale these anomalies are sparse, with a low degree of coalescence effect. The ∇T map indeed presents generally small values within the CEML area, indicating that the Palaeozoic Platform is weakly magnetized. At 350 km altitude, the TESZ effect is largely dominant: with intense ∇T highs above the East European Craton (EEC) and very small values above the Palaeozoic Platform, this again denoting a weakly magnetized crust. Small coalescence effects are masked by the trend of the TESZ. Although we identified sparsely located reversely magnetized sources in the Palaeozoic Platform of the CEML, the joint analysis does not support a model of a generally reversely magnetized crust. Instead, our analysis strongly favors the hypothesis that the CEML anomaly is mainly caused by a sharp contrast between the magnetic properties of EEC and Palaeozoic Platform.


2010 ◽  
Vol 6 (S273) ◽  
pp. 446-450 ◽  
Author(s):  
Yuan Yuan ◽  
Frank Y. Shih ◽  
Ju Jing ◽  
Haimin Wang

AbstractIn this paper, we investigate whether incorporating sunspot-groups classification information would further improve the performance of our previous logistic regression based solar flare forecasting method, which uses only line-of-sight photospheric magnetic parameters. A dataset containing 4913 samples from the year 2000 to 2005 is constructed, in which 2721 samples from the year 2000, 2002 and 2004 are used as a training set, and the remaining 2192 samples from the year 2001, 2003 and 2005 are used as a testing set. Experimental results show that sunspot-groups classification combined with total gradient on the strong gradient polarity neutral line achieve the highest forecasting accuracy and thus it testifies sunspot-groups classification does help in solar flare forecasting.


Geophysics ◽  
2009 ◽  
Vol 74 (3) ◽  
pp. L17-L20 ◽  
Author(s):  
G. R. Cooper

Horizontal and vertical gradients, and filters based on them (such as the analytic signal), are used routinely to enhance detail in aeromagnetic data. However, when the data contain anomalies with a large range of amplitudes, the filtered data also will contain large and small amplitude responses, making the latter hard to see. This study suggests balancing the analytic signal amplitude (sometimes called the total gradient) by the use of its orthogonal Hilbert transforms, and shows that the balanced profile curvature can be an effective method of enhancing potential-field data. Source code is available from the author on request.


1995 ◽  
Vol 6 (6) ◽  
pp. 815-824 ◽  
Author(s):  
Jari Oksanen ◽  
Tiina Tonteri
Keyword(s):  

Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. L21-L30 ◽  
Author(s):  
Soraya Lozada Tuma ◽  
Carlos Alberto Mendonça

We present a three-step magnetic inversion procedure in which invariant quantities with respect to source parameters are inverted sequentially to give (1) shape cross section, (2) magnetization intensity, and (3) magnetization direction for a 2D (elongated) magnetic source. The quantity first inverted (called here the shape function) is obtained from the ratio of the gradient intensity of the total-field anomaly to the intensity of the anomalous vector field. For homogenous sources, the shape function is invariant with source magnetization and allows reconstruction of the source geometry by attributing an arbitrary magnetization to trial solutions. Once determined, the source shape is fixed and magnetization intensity is estimated by fitting the total gradient of the total-field anomaly (equivalent to the amplitude of the analytic signal of magnetic anomaly). Finally, the source shape and magnetization intensity are fixed and the magnetization direction is determined by fitting the magnetic anomaly. As suggested by numerical modeling and real data application, stepped inversion allows checking whether causative sources are homogeneous. This is possible because the shape function from inhomogeneous sources can be fitted by homogeneous models, but a model obtained in this way fits neither the total gradient of the magnetic anomaly nor the magnetic anomaly itself. Such a criterion seems effective in recognizing strongly inhomogeneous sources. Stepped inversion is tested with numerical experiments, and is used to model a magnetic anomaly from intrusive basic rocks from the Paraná Basin, Brazil.


1983 ◽  
Vol 48 (6) ◽  
pp. 1618-1623
Author(s):  
Otakar Červinka ◽  
Ilja Sedlák ◽  
František Strejček

CD spectra of (S)-(-)-2-phenyl-1-methylpyrrolidine (I) and (S)-(-)-1-methyl-2-(2-tolyl)pyrrolidine (II) were calculated. Rotational strengths were calculated by direct procedure based on the CNDO/S-CI wave function. The most stable conformations were determined by total gradient optimization of molecular geometry and their molar fractions were calculated. CD spectra, constructed from the molar fractions and rotational strengths, agreed well with the experimental ones. Absolute configuration of compound II was established by the chemical correlation with (S)-(-)-hygrinic acid.


Sign in / Sign up

Export Citation Format

Share Document