Damage characterization and numerical modeling of titanium matrix composites subjected to low-velocity impact for landing gear application

2014 ◽  
Vol 24 (4) ◽  
pp. 343-358 ◽  
Author(s):  
Tomohiro Yokozeki ◽  
Naoki Kotsuka ◽  
Keisuke Yoshida ◽  
Kouta Fujiwara ◽  
Toyohiro Sato
Author(s):  
Khaled S. Al-Athel ◽  
Ahmed Alomari ◽  
Abul Fazal M. Arif

Composites are prone to delamination damage when impacted by low velocity projectiles because of the poor through-thickness strength. Therefore, some of the problems with composites are their poor impact damage resistance, weak post-impact mechanical properties, and the difficulty to inspect the impacted area by nondestructive means. Damage characterization of composite materials requires a scientific methodology, knowledge of polymeric materials, and direct field experience. In this work, low-velocity impact response of composite laminates was experimentally studied using drop-tower to determine the energy absorption. Three types of composites were used: carbon fiber, glass fiber, and mixed fiber composite laminates. In addition, these composites were characterized using thermography to quantify their post impact damage. It was found with the 3D temperature distribution that a strong correlation can be determined between the measured temperatures at the impact region with the quantification of the damage using thermal imaging with advanced mid-wave camera.


2019 ◽  
Vol 11 (5) ◽  
pp. 670-685 ◽  
Author(s):  
Konstantinos Stamoulis ◽  
Stelios K. Georgantzinos ◽  
G.I. Giannopoulos

Purpose The present study deals with the numerical modeling of the low-velocity impact damage of laminated composites which have increasingly important applications in aerospace primary structures. Such damage, generated by various sources during ground handling, substantially reduces the mechanical residual performance and the safe-service life. The purpose of this paper is to present and validate a computationally efficient approach in order to explore the effect of critical parameters on the impact damage characteristics. Design/methodology/approach Numerical modeling is considered as one of the most efficient tool as compared to the expensive and time-consuming experimental testing. In this paper, a finite element model based on explicit dynamics formulations is adopted. Hashin criterion is applied to predict the intralaminar damage initiation and evolution. The numerical analysis is performed using the ABAQUS® programme. Findings The employed modeling approach is validated using corresponding numerical data found in the literature and the presented results show a reasonable correlation to the available literature data. It is demonstrated that the current model can be used to capture the force-time response as well as damage parameter maps showing the intralaminar damage evolution for different impact cases with respect to the physical boundary conditions and a range of impact energies. Originality/value Low-velocity impact damage of laminated composites is still not well understood due to the complexity and non-linearity of the damage zone. The presented model is used to predict the force-time response which is considered as one of the most important parameters influencing the structural integrity. Furthermore, it is used for capturing the damage shape evolution, exhibiting a high degree of capability as a damage assessment computational tool.


Sign in / Sign up

Export Citation Format

Share Document