Damage Characterization of Carbon and Glass Fiber Composite Plates Subjected to Low-Velocity Impact Using Thermography

Author(s):  
Khaled S. Al-Athel ◽  
Ahmed Alomari ◽  
Abul Fazal M. Arif

Composites are prone to delamination damage when impacted by low velocity projectiles because of the poor through-thickness strength. Therefore, some of the problems with composites are their poor impact damage resistance, weak post-impact mechanical properties, and the difficulty to inspect the impacted area by nondestructive means. Damage characterization of composite materials requires a scientific methodology, knowledge of polymeric materials, and direct field experience. In this work, low-velocity impact response of composite laminates was experimentally studied using drop-tower to determine the energy absorption. Three types of composites were used: carbon fiber, glass fiber, and mixed fiber composite laminates. In addition, these composites were characterized using thermography to quantify their post impact damage. It was found with the 3D temperature distribution that a strong correlation can be determined between the measured temperatures at the impact region with the quantification of the damage using thermal imaging with advanced mid-wave camera.

2011 ◽  
Vol 335-336 ◽  
pp. 226-229
Author(s):  
Lun Wang ◽  
Wan Lin Zhou ◽  
Xue Gang Shi

In this paper, low-velocity impact residual tensile strength of carbon fiber composite laminates are investigated by experiment. The triple-plate-string-element finite element model was used to calculate the strength of repaired structures of the damage. The corresponding strength tests were conducted to verify the computational results. According to the computational and experimental results, the influence of the repair parameters on the repair efficiency was analyzed, such as the overlap length and the thickness of the patch.


2020 ◽  
Vol 4 (4) ◽  
pp. 148
Author(s):  
Ahmed S. AlOmari ◽  
Khaled S. Al-Athel ◽  
Abul Fazal M. Arif ◽  
Faleh. A. Al-Sulaiman

One of the problems with composites is their weak impact damage resistance and post-impact mechanical properties. Composites are prone to delamination damage when impacted by low-speed projectiles because of the weak through-thickness strength. To combat the problem of delamination damage, composite parts are often over-designed with extra layers. However, this increases the cost, weight, and volume of the composite and, in some cases, may only provide moderate improvements to impact damage resistance. The selection of the optimal parameters for composite plates that give high impact resistance under low-velocity impact loads should consider several factors related to the properties of the materials as well as to how the composite product is manufactured. To obtain the desired impact resistance, it is essential to know the interrelationships between these parameters and the energy absorbed by the composite. Knowing which parameters affect the improvement of the composite impact resistance and which parameters give the most significant effect are the main issues in the composite industry. In this work, the impact response of composite laminates with various stacking sequences and resins was studied with the Instron 9250G drop-tower to determine the energy absorption. Three types of composites were used: carbon-fiber, glass-fiber, and mixed-fiber composite laminates. Also, these composites were characterized by different stacking sequences and resin types. The effect of several composite structural parameters on the absorbed energy of composite plates is studied. A finite element model was then used to find an optimized design with improved impact resistance based on the best attributes found from the experimental testing.


2013 ◽  
Vol 710 ◽  
pp. 136-141
Author(s):  
Li Jun Wei ◽  
Fang Lue Huang ◽  
Hong Peng Li

Sandwich composite laminates structure is a classic application of composite material on actual aircraft structural. Dealing with low-velocity impact damage and residual compressive strength of sandwich composite laminates, explicit finite element method of ABAQUS/Explicit software was adopted to simulate low-velocity impact and compression process. Impact response and invalidation on compression between sandwich composite laminates with different core materials and regular composite laminates were compared. The simulation results indicated that softer core materials can absorb more impact energy, reduce the structure damage and enhance the residual compressive strength after impact.


Sign in / Sign up

Export Citation Format

Share Document