Power-Electronic Interface for a Supercapacitor-Based Energy-Storage Substation in DC-Transportation Networks

EPE Journal ◽  
2004 ◽  
Vol 14 (4) ◽  
pp. 43-49 ◽  
Author(s):  
Alfred Rufer ◽  
Philipep Barrade ◽  
David Hotellier
Author(s):  
Peng Wang ◽  
Zhongbin Pan ◽  
Weilin Wang ◽  
Jianxu Hu ◽  
Jinjun Liu ◽  
...  

High-performance electrostatic capacitors are in urgent demand owing to the rapidly development of advanced power electronic applications. However, polymer-based composite films with both high breakdown strength (Eb) and dielectric constant...


2021 ◽  
Vol 850 (1) ◽  
pp. 012036
Author(s):  
R Latha ◽  
S Adharsh Babu ◽  
M Vivek Kumar

Abstract Electric vehicles are the future of mobility solutions. The electric vehicles are driven by an electric motor with the help of a power electronic interface. The power electronic interface needs to be designed in an efficient way both in mechanical and electrical aspects. This paper proposes the concept of design, simulation and analysis of a 10 kW Multi-Device Interleaved DC-DC Boost Converter (MDIBC) to drive a 4 kW Induction Motor. The motor is driven from the MDIBC through an inverter with SPWM technique. The variation in DC link voltage due to motor is controlled and stabilized to give a constant DC of 400 V. MDIBC consists of semi-controlled switches topology excited by Phase Shifted PWM technique to reduce the ripple current in interleaving inductors. The dual loop control methodology using PI controller is adopted to reduce the ripple in input inductor current and DC link voltage. The open loop simulation and closed loop simulation are done in MATLAB Simulink environment. The simulation results show that the overshoots and steady state error in inductor currents and output voltage are reduced in addition with reduction in current and voltage ripples.


Sign in / Sign up

Export Citation Format

Share Document