Characterization of Modal Noise, Splice and Bending Loss in Single-mode Depressed Cladding Fibres

1989 ◽  
Vol 36 (5) ◽  
pp. 611-618 ◽  
Author(s):  
S.J. Garth
Keyword(s):  
2012 ◽  
Vol 19 (2) ◽  
pp. 64-70 ◽  
Author(s):  
Hisham Kadhum Hisham ◽  
Ahmad Fauzi Abas ◽  
Ghafour Amouzad Mahdiraji ◽  
Mohd Adzir Mahdi ◽  
Ahmad Shukri Muhammad Noor

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Rakibul Islam ◽  
Md. Arif Hossain ◽  
Syed Iftekhar Ali ◽  
Jakeya Sultana ◽  
Md. Saiful Islam

AbstractA novel photonic crystal fiber (PCF) based on TOPAS, consisting only rectangular slots is presented and analyzed in this paper. The PCF promises not only an extremely low effective material loss (EML) but also a flattened dispersion over a broad frequency range. The modal characteristics of the proposed fiber have been thoroughly investigated using finite element method. The fiber confirms a low EML of 0.009 to 0.01 cm−1 in the frequency range of 0.77–1.05 THz and a flattened dispersion of 0.22±0.01 ps/THz/cm. Besides, some other significant characteristics like birefringence, single mode operation and confinement loss have also been inspected. The simplicity of the fiber makes it easily realizable using the existing fabrication technologies. Thus it is anticipated that the new fiber has the potential to ensure polarization preserving transmission of terahertz signals and to serve as an efficient medium in the terahertz frequency range.


2017 ◽  
Vol 6 (1) ◽  
pp. 63
Author(s):  
S. Makouei

In this paper, the strain insensitive single mode optical fiber with low nonlinear effects and ultra low bending loss (BL), appropriate for small curvature radius installation, is presented. The suggested design method is based on the reverse engineering which evaluates the refractive index profile considering proper mode field diameter (MFD) value. Then, so as to attain the desired bending loss and strain response for the optical fiber, the optimization tool of the evolutionary genetic algorithm (GA) is employed to determine the optical and geometrical parameters of the structure. In the first designed fiber, the calculations for BL, MFD, effective area (Aeff), and effective refractive index (neff) sensitivity to strain in the well-known wavelength of 1.55 µm are 0.0018 dB per each turn of 5 mm curvature radius, 8.53 µm, 58 µm2, and 4.5 × 10-8 µɛ-1, respectively. Furthermore, the effect of placing raised outer cladding in the fiber structure is investigated which exhibits the MFD of 8.63 µm, 0.0093 dB BL for single turn of 5 mm radius, and 87 µm2 Aeff at 1.55 µm. In this case the strain sensitivity of 6.7 × 10-8 µɛ-1 is calculated for the neff. The mentioned effective area is magnificently large in the domain of bend insensitive fibers. In the meantime, the designed structures are insensitive to strain which is a crucial feature in applications with small curvature radius.


OSA Continuum ◽  
2019 ◽  
Vol 2 (11) ◽  
pp. 3299
Author(s):  
Evan Gawron ◽  
Michael Maurer ◽  
Christopher Middlebrook ◽  
Kevin Kellar

2014 ◽  
Vol 39 (6) ◽  
pp. 1437 ◽  
Author(s):  
E. P. Alcusa-Sáez ◽  
A. Díez ◽  
M. González-Herráez ◽  
M. V. Andrés

Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 96 ◽  
Author(s):  
Alicia López ◽  
M. Losada ◽  
Javier Mateo ◽  
N. Antoniades ◽  
Xin Jiang ◽  
...  

Couplers and splitters are common devices in single-mode and multi-mode glass fibers applications, where they perform a variety of functions. However, when switching to plastic optical fibers (POFs), there is a shortage of commercial devices, which are usually custom-made. The problem with these devices is that modal power distribution in POFs is easily modified by spatial disturbances that produce a localized strong power transfer between modes, thus changing their transmission properties. In this work, a commercial Y-coupler designed for POFs is experimentally characterized. Measurements of its spectral, spatial and temporal characteristics have been performed, including insertion loss as a function of wavelength, angular power distribution, and frequency response. The obtained results show that this device has an equalizing effect over the power spatial distribution that reduces the fiber bandwidth, demonstrating the importance of considering the impact of this type of devices on the transmission properties of any POF system.


Sign in / Sign up

Export Citation Format

Share Document