Changes in Amount of Nitrogenous Compounds from Skins and Seeds of Four Grape Cultivars During Extraction Using Juice- or Fermenting Must-Like Model Solutions

2002 ◽  
Vol 13 (3) ◽  
pp. 203-215 ◽  
Author(s):  
Masakazu Fukui ◽  
Tohru Okuda ◽  
Tsutomu Takayanagi ◽  
Koki Yokotsuka
Agronomie ◽  
2003 ◽  
Vol 23 (5-6) ◽  
pp. 503-510 ◽  
Author(s):  
Florence Paynel ◽  
Jean Bernard Cliquet

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 510f-511 ◽  
Author(s):  
D.C. Ferree ◽  
S.J. McArtney ◽  
D.M. Scurlock

Four French–American hybrid grape cultivars grown in a greenhouse were subjected to 5 days of 80% shade at four different times around bloom. Fruit set of `Seyval' was reduced by shade imposed before, during, or immediately after bloom. `Vidal' and `Chambourcin' were less sensitive, with fruit set reduced only by shade at bloom. Shade had little effect on fruit set of `DeChaunac'. In a second study, `Chambourcin' vines were exposed to ambient, ambient plus supplemental lights, and 30%, 50%, or 80% shade for 5 weeks beginning just prior to bloom. Fruit set was positively related to light intensity. At harvest, soluble solids, pH, and hue angle had a negative linear relationship to light level. Fruit color developed earliest and most rapidly with the reduced light treatments applied at bloom. Cluster weight was positively related to light intensity.


2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 940
Author(s):  
Michael G. Kontominas ◽  
Anastasia V. Badeka ◽  
Ioanna S. Kosma ◽  
Cosmas I. Nathanailides

Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 626
Author(s):  
Alexander Rudolph ◽  
Amna El-Mohamad ◽  
Christopher McHardy ◽  
Cornelia Rauh

Fruits have an important economic impact in the context of plant-based food production. The consumption of fruit juices, mostly produced from concentrates, is particularly noteworthy. Conventional concentration methods do not always enable a sustainable and gentle concentration. The innovative gas hydrate technology addresses this point with its energy-saving, gentle character, and high concentration potential. In this study, the concentration of fruit juices and model solutions using CO2 hydrate technology was investigated. To find a suitable operating point for hydrate formation in the used bubble column, the hydrate formation in a water–sucrose model solution was evaluated at different pressure and temperature combinations (1, 3, 5 °C and 32.5, 37.5, 40 bar). The degrees of concentration indicate that the bubble column reactor operates best at 37.5 bar and 3 °C. To investigate the gentle processing character of the hydrate technology, its quantitative effects on vitamin C, betanin, polyphenols, and carotenoids were analyzed in the produced concentrates and hydrates via HPLC and UV/VIS spectrophotometry. The results for fruit juices and model solutions imply that all examined substances are accumulated in the concentrate, while only small amounts remain in the hydrate. These amounts can be related to an inefficient separation process.


2021 ◽  
Vol 1058 (1) ◽  
pp. 012009
Author(s):  
M Abdulredha ◽  
N R Kadhim ◽  
Ameer H Hussein ◽  
Mohammad Almutairi ◽  
Rafid Alkhaddar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document