n transfer
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 3)

ARKIVOC ◽  
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Renzo Liuisi ◽  
Michael Andresini ◽  
Marco Colella ◽  
Leonardo Degennaro

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saeed Behzadinasab ◽  
Alex W. H. Chin ◽  
Mohsen Hosseini ◽  
Leo L. M. Poon ◽  
William A. Ducker

AbstractTransfer of SARS-CoV-2 from solids to fingers is one step in infection via contaminated solids, and the possibility of infection from this route has driven calls for increased frequency of handwashing during the COVID-19 pandemic. To analyze this route of infection, we measured the percentage of SARS-CoV-2 that was transferred from a solid to an artificial finger. A droplet of SARS-CoV-2 suspension (1 µL) was placed on a solid, and then artificial skin was briefly pressed against the solid with a light force (3 N). Transfer from a variety of solids was detected, and transfer from the non-porous solids, glass, stainless steel, and Teflon, was substantial when the droplet was still wet. The viral titer for the finger was 13–16% or 0.8–0.9 log less than for the input droplet. Transfer still occurred after the droplet evaporated, but was smaller, 3–9%. We found a lower level of transfer from porous solids but did not find a significant effect of solid wettability for non-porous solids.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1171
Author(s):  
Xianyu Yao ◽  
Uromi Manage Goodale ◽  
Mei Yang ◽  
Liangning Liao ◽  
Sufang Yu ◽  
...  

N2-fixing species play a crucial role in mixed-plantations as they improve stand productivity. To quantify the N transfer from N2-fixing species to Eucalyptus (Eucalyptus urophylla × E. grandis) in N2-fixing species/Eucalyptus plantations, we established a pot experiment and confirmed the occurrence of this process under natural conditions. The 15N was traced in labeled species as well as in neighboring tree species after labeling, and the growth was evaluated in short-term natural trials. Our results showed that a bidirectional N transfer occurred. The amount of net N transfer was 21.8–127.0 mg N plant−1, which was equal to 1.5–21.2% of the total nitrogen (TN) that accumulated in Eucalyptus plants under pot conditions, was transferred from Dalbergia odorifera to Eucalyptus. The amount of N transferred significantly decreased with the increasing N application rate but increased with time after labeling. Compared with the results for the Eucalyptus monocrop, the soil N concentration (including NO3−-N and NH4+-N) greatly improved when D. odorifera was introduced together with Eucalyptus under both field and pot conditions. Furthermore, the results under field conditions were consistent with the results of the pot experiment. The dry matter (DM) yield (14.5–16.4%) and the N content (5.1–9.6%) in Eucalyptus increased when mixed together with D. odorifera, but the N content in and DM yield of D. odorifera slightly decreased. It is concluded that the N transfer between Eucalyptus and D. odorifera is a much more important dynamic process than previously recognized, and Eucalyptus and legume intercropping is a successful management practice because N transfer provides a significant amount of N required for Eucalyptus productivity.


2021 ◽  
Vol 118 (33) ◽  
pp. e2022724118
Author(s):  
Qianshi Lin ◽  
Cécile Ané ◽  
Thomas J. Givnish ◽  
Sean W. Graham

Carnivorous plants consume animals for mineral nutrients that enhance growth and reproduction in nutrient-poor environments. Here, we report that Triantha occidentalis (Tofieldiaceae) represents a previously overlooked carnivorous lineage that captures insects on sticky inflorescences. Field experiments, isotopic data, and mixing models demonstrate significant N transfer from prey to Triantha, with an estimated 64% of leaf N obtained from prey capture in previous years, comparable to levels inferred for the cooccurring round-leaved sundew, a recognized carnivore. N obtained via carnivory is exported from the inflorescence and developing fruits and may ultimately be transferred to next year’s leaves. Glandular hairs on flowering stems secrete phosphatase, as seen in all carnivorous plants that directly digest prey. Triantha is unique among carnivorous plants in capturing prey solely with sticky traps adjacent to its flowers, contrary to theory. However, its glandular hairs capture only small insects, unlike the large bees and butterflies that act as pollinators, which may minimize the conflict between carnivory and pollination.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 690
Author(s):  
Gabriela Cristina Salgado ◽  
Edmilson Jose Ambrosano ◽  
Fabrício Rossi ◽  
Ivani Pozar Otsuk ◽  
Gláucia Maria Bovi Ambrosano ◽  
...  

The aim of this study was to investigate the transfer of N from different legumes to cherry tomatoes in the intercropping system under residual straw of the previous green corn crop using the 15N natural abundance method. We also investigated the temporal variation in nitrogen transfer to a cherry tomato, the biological nitrogen fixation (BNF) of legumes, and the N concentration of green corn cultivated in the intercrop succession. The experimental design was a complete randomized block with eight treatments and five replications, described as follows: two controls consisting of a monocrop of cherry tomato with or without residual straw, cherry tomato and jack bean, sun hemp, dwarf velvet bean, mung bean, and white lupine or cowpea bean in intercropping system. The BNF was responsible for more than half of the N accumulated in the legumes. The N of legumes was transferred to cherry tomato in similar quantities, and the leaves and fruits of cherry tomato received more N transfer than shoots. It was shown that N transfer increases with the growth/development of cherry tomatoes. The intercropping system with legumes did not affect the 15N natural abundance of leaves and the aboveground biomass of green corn cultivated in succession.


2021 ◽  
Author(s):  
Saeed Behzadinasab ◽  
Alex W.H. Chin ◽  
Mohsen Hosseini ◽  
Leo L.M. Poon ◽  
William A. Ducker

AbstractTransfer of SARS-CoV-2 from solids to fingers is one step in infection via contaminated solids, and the possibility of infection from this route has driven calls for increased frequency of handwashing during the COVID-19 pandemic. To analyze this route of infection, we measured the percentage of SARS-CoV-2 that was transferred from a solid to an artificial finger. A droplet of SARS-CoV-2 suspension (1 µL) was placed on a solid, and then artificial skin was briefly pressed against the solid with a light force (3 N). Transfer from a variety of solids was detected, and transfer from the non-porous solids, glass, stainless steel, and Teflon, was substantial (13-16 %) when the droplet was still wet. Transfer still occurred after the droplet evaporated, but it was smaller. We found a lower level of transfer from porous solids but did not find a significant effect of solid wettability for non-porous solids.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xianyu Yao ◽  
Liangning Liao ◽  
Yongzhen Huang ◽  
Ge Fan ◽  
Mei Yang ◽  
...  

Abstract Background The mixing of Eucalyptus with N2-fixing trees species (NFTs) is a frequently successful and sustainable cropping practice. In this study, we evaluated nitrogen (N) transfer and conducted a proteomic analysis of the seedlings of Eucalyptus urophylla × E. grandis (Eucalyptus) and an NFT, Dalbergia (D.) odorifera, from intercropping and monocropping systems to elucidate the physiological effects and molecular mechanisms of N transfer in mixed Eucalyptus and D. odorifera systems. Results N transfer occurred from D. odorifera to Eucalyptus at a rate of 14.61% in the intercropping system, which increased N uptake and growth in Eucalyptus but inhibited growth in D. odorifera. There were 285 and 288 differentially expressed proteins by greater than 1.5-fold in Eucalyptus and D. odorifera roots with intercropping vs monoculture, respectively. Introduction of D. odorifera increased the stress resistance ability of Eucalyptus, while D. odorifera stress resistance was increased by increasing levels of jasmonic acid (JA). Additionally, the differentially expressed proteins of N metabolism, such as glutamine synthetase nodule isozyme (GS), were upregulated to enhance N competition in Eucalyptus. Importantly, more proteins were involved in synthetic pathways than in metabolic pathways in Eucalyptus because of the benefit of N transfer, and the two groups of N compound transporters were found in Eucalyptus; however, more functional proteins were involved in metabolic degradation in D. odorifera; specifically, the molecular mechanism of the transfer of N from D. odorifera to Eucalyptus was explained by proteomics. Conclusions Our study suggests that N transfer occurred from D. odorifera to Eucalyptus and was affected by the variations in the differentially expressed proteins. We anticipate that these results can be verified in field experiments for the sustainable development of Eucalyptus plantations.


2021 ◽  
Author(s):  
Guan-Han Lu ◽  
Tzu-Chia Huang ◽  
Hsiao Chin Hsueh ◽  
Shin-Cherng Yang ◽  
Ting Wei Cho ◽  
...  

A novel universal N-transfer reagent for direct and effective transformation of α-amino ketones, acetamides, and esters to the corresponding α-diazo products under mild basic conditions has been developed. This one-step...


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Linfa Fang ◽  
Xinhua He ◽  
Xueliang Zhang ◽  
Yehua Yang ◽  
Rui Liu ◽  
...  

Few studies have examined if perennial leguminous cover crops are able to transfer nitrogen (N) via common mycorrhizal networks (CMNs) to neighboring fruit trees; the gradient of such N transfer could affect the N nutrition of both plants. Using separated three-column chambers to grow plants in a greenhouse, 99 atom% 15N as (15NH4)2SO4 was applied to leaves of white clover (Trifolium repens L.) and 15N was then traced in neighboring citrus (Citrus sinensis (L.) Osbeck) seedlings interconnected by an arbuscular mycorrhizal fungus (AMF, Rhizophagus intraradices). A range of 66.85–68.74% mycorrhizal colonization in white clover (mycorrhizal and/or Rhizobium trifolii inoculated) and 19.29–23.41% in citrus (non-mycorrhizal inoculated) was observed after 12 months of AMF inoculation in the white clover, indicating a successful CMN linkage was established between these two plant species. This CMN establishment resulted in significant increases in biomass, N accumulation, and 15N content of citrus when accompanied with nodulated and mycorrhizal fungus colonized white clover. N transfer from white clover to citrus was significantly greater under nodulation plus mycorrhization (46.23 mg N per pot, 1.71% of N transferred) than under non-inoculated control (4.36 mg N per pot, 0.21% of N transferred), and higher than sole mycorrhization (36.34 mg N per pot, 1.42% of N transferred). The percentage of N in citrus derived from white clover under nodulated/mycorrhization was 1.83–1.93%, and was highest in leaves (3.31%), moderate in stems (2.47%), and lowest in roots (0.41%) of citrus. In summary, results from this experiment demonstrated that nearly 2.0% of N transferred from white clover to citrus via CMN. Further studies are needed to quantify N transfer between white clover and citrus by other routes, including soil or root exudation pathways.


Sign in / Sign up

Export Citation Format

Share Document