Beauveria bassiana (Balsamo) Vuillemin - a Promising Microbial Control Agent of the Satin Moth (Lepidoptera: Lymantriidae)

2000 ◽  
Vol 10 (5) ◽  
pp. 641-644 ◽  
Author(s):  
L. Zurek ◽  
B. A. Keddie
2003 ◽  
Vol 56 ◽  
pp. 118-122
Author(s):  
R.J. Townsend ◽  
M. O'Callaghan ◽  
V.W. Johnson ◽  
T.A. Jackson

Microbial control agents targeting soildwelling organisms need to be compatible with commonly used fertilisers The bacterium Serratia entomophila is used as a microbial control agent for control of the New Zealand grass grub Costelytra zealandica and Beauveria bassiana is an entomopathogenic fungus used to control a range of insect pests These biocontrol agents were formulated into granules and applied to pots together with five fertilisers commonly used on pastures throughout New Zealand Compatibility with S entomophila was also assessed in a field trial where treatments were applied by direct drilling and surface application There appeared to be no deleterious effect from the application of the fertiliser treatments on the establishment and survival of either S entomophila or B bassiana On the contrary there was a suggestion that some nitrogenous fertilisers may lead to an increase in numbers of the bacterial biocontrol agent


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 393B-393
Author(s):  
J. Farías-Larios ◽  
M. Orozco-Santos ◽  
N.R. Ramírez-Vazquez

Bemisia argentifolii is a major pest of melon crop in key production areas of Mexico. Foliar applications of chemical insecticides for their management have been ineffective. The purpose of this research was to evaluate the use of commercial formulations of Beauveria bassiana and different rates for biological control of silverleaf whitefly in cantaloupe melon grown under tropical conditions. Experimental plots were treated with three rates of Mycotrol ES and only an of Naturalis-L or Endosulfan as conventional insecticide. Treatments were arranged in a randomized complete-block design with four replicates. Effects of the treatments on B. argentifolii larval and adult populations and the amount of damage to the foliage and yield melon were recorded. There was not a significant difference between Mycotrol ES rates in nymphs and adults killed. Mycotrol ES, Naturalis and Endosulfan have a similar effect on nymphs and adults control. The nontreated control melon plants had significantly greater number of silverleaf whitefly nymphs and adults than Mycotrol ES, Naturalis-L and Endosulfan treatments. Also, marketable yield was lower for the nontreated control melon plants due to higher whitefly infestations. Results from this study indicate that B. bassiana use resulted in consistently lower whitefly infestations compared to the control. The field results are promising and confirmed the potential of B. bassiana as a microbial control agent against B. argentifolii in melon crop under tropical conditions.


2001 ◽  
Vol 133 (1) ◽  
pp. 105-107 ◽  
Author(s):  
Barbara S. Mulock ◽  
Laurence D. Chandler

A key stage in the development of an insect epizootic, either natural or induced, is the transmission of a pathogen from an infected to an uninfected host (Andreadis 1987). The establishment of secondary infections can augment long-term control by increasing the amount of inoculum present within the environment (Thomas et al. 1995). The ease of disease transmission from an infected to a healthy host is an important consideration in evaluating the potential of an entomopathogen as a microbial control agent. Currently, we are field-testing the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Moniliaceae), for the suppression of adult western corn rootworm, Diabrotica virgifera virgifera LeConte, which is a key pest of corn, Zea mays L. (Gramineae), throughout the north-central United States and eastern Canada (Mulock and Chandler 2000). During our investigations we have often observed sporulating cadavers on corn plants, particularly within the leaf collars, following fungal application. In this study, we estimated the effect of the density of infected cadavers and the length of exposure time on disease transmission in adult western corn rootworm.


2009 ◽  
Vol 75 (14) ◽  
pp. 4661-4667 ◽  
Author(s):  
Alejandro Hernández-Soto ◽  
M. Cristina Del Rincón-Castro ◽  
Ana M. Espinoza ◽  
Jorge E. Ibarra

ABSTRACT Bacillus thuringiensis subsp. israelensis is the most widely used microbial control agent against mosquitoes and blackflies. Its insecticidal success is based on an arsenal of toxins, such as Cry4A, Cry4B, Cry11A, and Cyt1A, harbored in the parasporal crystal of the bacterium. A fifth toxin, Cry10Aa, is synthesized at very low levels; previous attempts to clone and express Cry10Aa were limited, and no parasporal body was formed. By using a new strategy, the whole Cry10A operon was cloned in the pSTAB vector, where both open reading frames ORF1 and ORF2 (and the gap between the two) were located, under the control of the cyt1A operon and the STAB-SD stabilizer sequence characteristic of this vector. Once the acrystalliferous mutant 4Q7 of B. thuringiensis subsp. israelensis was transformed with this construct, parasporal bodies were observed by phase-contrast microscopy and transmission electron microscopy. Discrete, ca. 0.9-μm amorphous parasporal bodies were observed in the mature sporangia, which were readily purified by gradient centrifugation once autolysis had occurred. Pure parasporal bodies showed two major bands of ca. 68 and 56 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. These bands were further characterized by N-terminal sequencing of tryptic fragments using matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, which identified both bands as the products of ORF1 and ORF2, respectively. Bioassays against fourth-instar larvae of Aedes aegypti of spore-crystal complex and pure crystals of Cry10Aa gave estimated 50% lethal concentrations of 2,061 ng/ml and 239 ng/ml, respectively. Additionally, synergism was clearly detected between Cry10A and Cyt1A, as the synergistic levels (potentiation rates) were estimated at 13.3 for the mixture of Cyt1A crystals and Cry10Aa spore-crystal complex and 12.6 for the combination of Cyt1A and Cry10Aa pure crystals.


1997 ◽  
Vol 129 (S171) ◽  
pp. 147-156 ◽  
Author(s):  
B. Zelazny ◽  
M.S. Goettel ◽  
B. Keller

AbstractBacteria have been implicated in disease epizootics observed in field populations and laboratory-reared locusts and grasshoppers. Two species [Serratia marcescens Bizio and Pseudomonas aeruginosa (Schroeter) Migula] consistently infect locusts when ingested with food and can spread in laboratory populations. However, research on developing these organisms for microbial control of locusts and grasshoppers begun in the 1950s has not been continued. In recent years strains of Bacillus thuringiensis Berliner have been studied for activity against locusts and grasshoppers. Results of additional trials by the authors are reported. Among 393 B. thuringiensis isolates and 93 preparations of other sporeforming bacteria fed to nymphs of Locusta migratoria (L.) and/or Schistocerca gregaria Forsk., none has shown any pathogenicity to the insects. The recent discovery of novel B. thuringiensis strains active against various diverse pests and the many properties of a sporeforming bacterium that satisfy the requirements for a microbial control agent, and the development of Serratia entomophila as a promising agent for control of grass grubs, provide incentive to continue the search for an orthopteran-active sporeforming bacterium and to re-investigate the potential of non-sporeforming bacterial pathogens as microbial control agents of grasshoppers and locusts.


2003 ◽  
Vol 60 (4) ◽  
pp. 663-667 ◽  
Author(s):  
Carolina Natali de Oliveira ◽  
Pedro Manuel Oliveira Janeiro Neves ◽  
Lídio Sueki Kawazoe

Microbial control in integrated pest management (IPM) programs of coffee plantations is an important factor for the reduction of pest population densities. The use of selective pesticides can be associated with entomopathogens, increasing the efficiency of the control and reducing the use of required insecticides. The in vitro fungitoxic effect of insecticide formulations of Thiamethoxam, Cyfluthrin, Deltamethrin, Alpha-Cypermethrin, Triazophos, Chlorpyrifos, Fenpropathrin and Endosulfan and Beauveria bassiana (CG 425 strain) was evaluated at three concentrations (FR = average field recommendation; 0.5 ´ FR and 2 ´ FR). Effects of these products on conidia germination, vegetative growth and sporulation were compared. Only five insecticides, at the FR concentration, promoted conidia viability higher than 60%. Viability should be considered the most important factor to be evaluated since it is the first step of the infection process. The insecticide formulations of Alpha-Cypermethrin, Thiamethoxam and Cyfluthrin caused the lower inhibition level on conidia germination at the two lower concentrations, with no difference in relation to the control. With respect to vegetative growth analysis, Thiamethoxam at the two lower concentrations was not found to cause radial growth inhibition. Thiamethoxam caused the smallest inhibition level with regard to conidia production. The use of Alpha-Cypermethrin and Thiamethoxam formulations in coffee IPM programs for a B. bassiana inoculum conservation strategy are recommended, since these products were compatible with the entomopathogenic fungus Beauveria bassiana (CG 425), an important natural control agent of the coffee berry borer, Hypothenemus hampei.


Author(s):  
Endang Sulistyowati ◽  
Febrilia Nur AINI

Beauveria bassiana is one of the entomopathogen fungi which is known as biological control agent of cocoa pod borer and cocoa mirids (Helopeltis spp.). Because of its effectiveness in the fields is still not consistent, so we conduct a research with the objective to know the possibility of Beauveria bassiana to be established as a endophyte. Various fungal entomopathogens have already been reported as endophytes and the various methods used to inoculate the plants with B. bassiana were partially effective. The research has been conducted in laboratory of Plant Protection, Indonesian Coffee and Cocoa Research Institute by inoculating of cocoa seeds and cocoa nursery with B. bassiana suspension.  The trial was arranged  by randomized complete block design with a factorial arrangement. The factor were spore concentration of B. bassiana (0; 2; and 4 g/ 10 l) and cocoa varieties (family of ICS 60, TSH858, and hybrid). The trial were use  four replications. The results showed that the fungal entomopathogen B. bassiana was established as an endophyte in cocoa seedling, both from cocoa seeds and nursery application. Percentage of existence of B. bassiana colonies as endophytes one month after seeds application were ICS 60 amounted to 93.3 % both on concentration treatments, while the families of TSH 858 by 80 % and 86.67 % respectively in 2 g and 4 g per 10 l of B. bassiana spores concentration treament.. The lowest percentage was in hybrids, which amounted to 66.67% and 50%. B. bassiana colonies was exixtence as an endophyte in culture from root, stem and leaves of cocoa seedling up to 5 months post inoculation. While the application on nursery by soil drenshing, leaf spraying, and stem injection , it was known that B. bassiana colonies were found in the tissues of leaves, stems, and roots until two months after application. Colonies of B. bassiana as endophytes still exsist until six weeks after nursery was planted in the field. 


Sign in / Sign up

Export Citation Format

Share Document