scholarly journals Compatibility of microbial control agents Serratia entomophila and Beauveria bassiana with selected fertilisers

2003 ◽  
Vol 56 ◽  
pp. 118-122
Author(s):  
R.J. Townsend ◽  
M. O'Callaghan ◽  
V.W. Johnson ◽  
T.A. Jackson

Microbial control agents targeting soildwelling organisms need to be compatible with commonly used fertilisers The bacterium Serratia entomophila is used as a microbial control agent for control of the New Zealand grass grub Costelytra zealandica and Beauveria bassiana is an entomopathogenic fungus used to control a range of insect pests These biocontrol agents were formulated into granules and applied to pots together with five fertilisers commonly used on pastures throughout New Zealand Compatibility with S entomophila was also assessed in a field trial where treatments were applied by direct drilling and surface application There appeared to be no deleterious effect from the application of the fertiliser treatments on the establishment and survival of either S entomophila or B bassiana On the contrary there was a suggestion that some nitrogenous fertilisers may lead to an increase in numbers of the bacterial biocontrol agent

2020 ◽  
Vol 23 (2) ◽  
pp. 1-6
Author(s):  
Helben Ismat Mohammaed ◽  
Mohammed Saeed Mirza ◽  
Feyroz Ramadan Hassan

Beauveria bassiana is an important entomopathogenic fungus that used as a biocontrol agent of insect pests. Maintaining and preserving B. bassiana cultures is essential for the effective evaluation of its potential as microbial agent against insect pest, for biodiversity studies and also for exchange of fungal material between laboratories. In the present work we evaluated the suitability of four preservation materials based on gelatin and rice to maintain the viability of B. bassiana to be used as baits for insect’s control. The gelatin amended with sugar recorded the maximum viability after 70 days of storage as 98.3% compared to 63.3% on rice media. Effective control of 80% of the ants was observed after 10 days of feeding on gelatin amended with sugar and rice bait. The results demonstrated that treatment with formulations containing conidia of B. bassiana presents insecticidal activity against ant in addition of acting as preservation materials.


2020 ◽  
Vol 23 (2) ◽  
pp. 1-6
Author(s):  
Helben Ismat Mohammaed ◽  
Mohammed Saeed Mirza ◽  
Feyroz Ramadan Hassan

Beauveria bassiana is an important entomopathogenic fungus that used as a biocontrol agent of insect pests. Maintaining and preserving B. bassiana cultures is essential for the effective evaluation of its potential as microbial agent against insect pest, for biodiversity studies and also for exchange of fungal material between laboratories. In the present work we evaluated the suitability of four preservation materials based on gelatin and rice to maintain the viability of B. bassiana to be used as baits for insect’s control. The gelatin amended with sugar recorded the maximum viability after 70 days of storage as 98.3% compared to 63.3% on rice media. Effective control of 80% of the ants was observed after 10 days of feeding on gelatin amended with sugar and rice bait. The results demonstrated that treatment with formulations containing conidia of B. bassiana presents insecticidal activity against ant in addition of acting as preservation materials.


2010 ◽  
Vol 90 (2) ◽  
pp. 49-56 ◽  
Author(s):  
Rachid Sabbahi ◽  
Robert Lavallée ◽  
Abderrazzak Merzouki ◽  
Claude Guertin

The entomopathogenic fungus Beauveria bassiana is a promising biological control agent of several insect pests in agriculture. Molecular approaches (PCR, DNA sequence analysis and PCR-RFLP) were used in our research as tools for the identification of different B. bassiana isolates. Our work consisted in identifying the 18S, ITS1, 5.8S, ITS2 and 28S regions of B. bassiana ribosomal DNA. The DNA sequences of the amplified regions showed that the 18S rDNA is the most conserved unit, with a high homology (99.5%) between the isolates studied, while the 3’ end of the 28S rDNA has a great variability, which makes it possible to differentiate the isolates. The PCR-RFLP method was used to monitor isolates of B. bassiana and distinguish them in a target pest, Lygus lineolaris. This method involved two main steps. First, PCR was used to amplify a region of the 28S gene of B. bassiana. Second, this PCR product was digested using restriction endonucleases, and the fragments produced were compared using gel electrophoresis. Because of the high specificity and sensitivity of PCR-RFLP, it was possible to discriminate between B. bassiana isolates using spores scraped from the surface of an infected insect as samples.


2021 ◽  
Vol 11 (9) ◽  
pp. 4066
Author(s):  
Spiridon Mantzoukas ◽  
Ioannis Lagogiannis ◽  
Aristeidis Ntoukas ◽  
George T. Tziros ◽  
Konstantinos Poulas ◽  
...  

Gnomoniopsis castaneae is the cause of the chestnut brown rot but has been also regarded as an important mortality factor for the chestnut gall wasp Dryocosmus kuriphilus. The question to whether G. castaneae could serve as a natural biocontrol agent against insect pests is investigated in the present study. We used three serious insect pests as experimental model insects: Plodia interpuctella and Trogoderma granarium, which are important pests of stored products, and Myzus persicae, a cosmopolitan, serious pest of annual and perennial crop plants. Although chemical pesticides represent effective control means, they are also related to several environmental and health risks. In search for alternative pest management methods, scientific interest has been focused, inter alia, on the use of entomopathogenic fungi. While Isaria fumosorosea has long been recognized as an effective control agent against several pests, G.castaneae has been very little studied. The present study examined whether and to what extent G. castaneae and I. fumosorosea exhibit insecticidal activity against fourth-instar larvae of P. interpunctella and T. granarium and adults of M. persicae. Mortality was examined in interrelation with dosage and time exposure intervals. Both fungi exhibited pesticidal action. However, G. castaneae induced noteworthy mortality only at very high doses. In general, we concluded that G. castaneae failed to cause high insect pathogenicity at normal doses and may not be an efficient biocontrol agent compared with other entomopathogens. On the other hand, our study reiterates the pathogenic potential of I. fumosorosea. More studies are needed to further our insight into the potential of EF species as a component of IPM.


2003 ◽  
Vol 60 (4) ◽  
pp. 663-667 ◽  
Author(s):  
Carolina Natali de Oliveira ◽  
Pedro Manuel Oliveira Janeiro Neves ◽  
Lídio Sueki Kawazoe

Microbial control in integrated pest management (IPM) programs of coffee plantations is an important factor for the reduction of pest population densities. The use of selective pesticides can be associated with entomopathogens, increasing the efficiency of the control and reducing the use of required insecticides. The in vitro fungitoxic effect of insecticide formulations of Thiamethoxam, Cyfluthrin, Deltamethrin, Alpha-Cypermethrin, Triazophos, Chlorpyrifos, Fenpropathrin and Endosulfan and Beauveria bassiana (CG 425 strain) was evaluated at three concentrations (FR = average field recommendation; 0.5 ´ FR and 2 ´ FR). Effects of these products on conidia germination, vegetative growth and sporulation were compared. Only five insecticides, at the FR concentration, promoted conidia viability higher than 60%. Viability should be considered the most important factor to be evaluated since it is the first step of the infection process. The insecticide formulations of Alpha-Cypermethrin, Thiamethoxam and Cyfluthrin caused the lower inhibition level on conidia germination at the two lower concentrations, with no difference in relation to the control. With respect to vegetative growth analysis, Thiamethoxam at the two lower concentrations was not found to cause radial growth inhibition. Thiamethoxam caused the smallest inhibition level with regard to conidia production. The use of Alpha-Cypermethrin and Thiamethoxam formulations in coffee IPM programs for a B. bassiana inoculum conservation strategy are recommended, since these products were compatible with the entomopathogenic fungus Beauveria bassiana (CG 425), an important natural control agent of the coffee berry borer, Hypothenemus hampei.


2009 ◽  
Vol 62 ◽  
pp. 395-395
Author(s):  
M. Brownbridge ◽  
R.J. Townsend ◽  
T.L. Nelson ◽  
B. Gicquel ◽  
M. Gengos

The Australian pasture pest Adoryphorus couloni (redheaded cockchafer RHCC) continues to slowly spread from the Port Hills and Banks Peninsula through Christchurch towards productive agricultural land on the Canterbury Plains There are currently no products chemical or biological registered in New Zealand to control this pest In Christchurch several parks used extensively for human recreation were badly damaged by RHCC grubs in the autumn/early winter of 2008 and had to be treated with chemical insecticides (diazinon) Laboratory trials were thus carried out to assess the susceptibility of New Zealand populations of RHCC to a microbial biocontrol agent Metarhizium anisopliae DATF001 (ChaferGuard) registered in Australia Fungal activity was directly influenced by temperature and mode of application Infection and mortality occurred faster at 20C than 15C High mortality levels (90100 after 7 weeks) were obtained when larvae were treated by topical application (105 conidia/grub) or exposure to the dry ChaferGuard formulation in soil; >80 of the cadavers in these treatments were mycosed Direct incorporation of conidia into soil was the least effective treatment Grass grub (Costelytra zealandica) was unaffected by the fungus This trial confirmed the efficacy of DATF001 and its potential for use against New Zealand populations of RHCC


2019 ◽  
Vol 8 (36) ◽  
Author(s):  
Eliseu Binneck ◽  
Claudia Cristina López Lastra ◽  
Daniel R. Sosa-Gómez

Metarhizium rileyi (formerly known as Nomuraea rileyi) is a potential agent for microbial control of many insect pests from the order Lepidoptera, the damages of which can cause considerable loss of productivity in agriculture. We report the genome sequence and annotation of M. rileyi strain Cep018-CH2/ARSEF 7053.


2021 ◽  
Vol 74 (1) ◽  
pp. 70-77
Author(s):  
Sonia Lee ◽  
Simon V. Fowler ◽  
Claudia Lange ◽  
Lindsay A. Smith ◽  
Alison M. Evans

Douglas-fir seed chalcid (DFSC) Megastigmus spermotrophus, a small (3 mm long) host-specific seed-predatory wasp, was accidentally introduced into New Zealand in the 1920s. Concern over DFSC reducing Douglas-fir seed production in New Zealand led to an attempt at biocontrol in 1955 with the release, but failed establishment, of the small (2.5 mm long) parasitoid wasp, Mesopolobus spermotrophus. We investigated why DFSC causes little destruction of Douglas-fir seed in New Zealand (usually <20%) despite the apparent absence of major natural enemies. Douglas-fir seed collections from 13 New Zealand sites yielded the seed predator (DFSC) but also potential parasitoids, which were identified using morphology and partial COI DNA sequencing. DFSC destroyed only 0.15% of Douglas-fir seed. All parasitoids were identified as the pteromalid wasp, Mes. spermotrophus, the host-specific biocontrol agent released in 1955. Total parasitism was 48.5%, but levels at some sites approached 90%, with some evidence of density-dependence. The discovery of the parasitoid Mes. spermotrophus could indicate that the biocontrol agent released in 1955 did establish after all. Alternatively, Mes. spermotrophus could have arrived accidentally in more recent importations of Douglas-fir seed. The high level of parasitism of DFSC by Mes. spermotrophus is consistent with DFSC being under successful biological control in New Zealand. Suppression of DFSC populations will benefit commercial Douglas-fir seed production in New Zealand, but it also represents the likely loss of a potential biological control agent for wilding Douglas-fir.


Sign in / Sign up

Export Citation Format

Share Document