scholarly journals Existence of entomopathogen fungi, Beauveria bassiana as an endophyte in cacao seedlings

Author(s):  
Endang Sulistyowati ◽  
Febrilia Nur AINI

Beauveria bassiana is one of the entomopathogen fungi which is known as biological control agent of cocoa pod borer and cocoa mirids (Helopeltis spp.). Because of its effectiveness in the fields is still not consistent, so we conduct a research with the objective to know the possibility of Beauveria bassiana to be established as a endophyte. Various fungal entomopathogens have already been reported as endophytes and the various methods used to inoculate the plants with B. bassiana were partially effective. The research has been conducted in laboratory of Plant Protection, Indonesian Coffee and Cocoa Research Institute by inoculating of cocoa seeds and cocoa nursery with B. bassiana suspension.  The trial was arranged  by randomized complete block design with a factorial arrangement. The factor were spore concentration of B. bassiana (0; 2; and 4 g/ 10 l) and cocoa varieties (family of ICS 60, TSH858, and hybrid). The trial were use  four replications. The results showed that the fungal entomopathogen B. bassiana was established as an endophyte in cocoa seedling, both from cocoa seeds and nursery application. Percentage of existence of B. bassiana colonies as endophytes one month after seeds application were ICS 60 amounted to 93.3 % both on concentration treatments, while the families of TSH 858 by 80 % and 86.67 % respectively in 2 g and 4 g per 10 l of B. bassiana spores concentration treament.. The lowest percentage was in hybrids, which amounted to 66.67% and 50%. B. bassiana colonies was exixtence as an endophyte in culture from root, stem and leaves of cocoa seedling up to 5 months post inoculation. While the application on nursery by soil drenshing, leaf spraying, and stem injection , it was known that B. bassiana colonies were found in the tissues of leaves, stems, and roots until two months after application. Colonies of B. bassiana as endophytes still exsist until six weeks after nursery was planted in the field. 

2021 ◽  
Vol 285 ◽  
pp. 03010
Author(s):  
Irina Agasyeva

Ectoparasite Habrobracon hebetor Say is one of the most widely used biological controllers in biological plant protection against a number of harmful lepidopterans, including especially dangerous pests of corn, soy, fruit and vegetable crops. As a result of research conducted in 2017, food specialization and parasitic activity of three different populations of H.hebetor were studied. Two races have been identified for mass rearing and application: pyralid and leaf roller (against corn moth, bean pod borer, apple and plum moths), and pyralid owl-moth (against cotton moth, corn borer, bean pod borer and boxwood moth). As a result of studies of biological features and trophic needs, it has been determined that caterpillars of mill moth (Ephestia cuhniellia Zella) should be used as a host insect for laboratory cultivation of the stock population of the Habrobracon pyralid and leaf roller race (race No. 1). For the introduced from South Kazakhstan the H.hebetor pyralid and noctuid race the most productive rearing is on the caterpillars of large bee moth (Galleria mellonela L.). Optimal temperature for rearing of both races is 26-28 ° C, relative air humidity is 70% and photoperiod is not less than 16 hours. It has been noticed that before laying eggs on the host’s caterpillars, the Habrobracon female preliminarily paralyzes the victim, piercing the sheath with ovipositor. As a result, the caterpillar stops eating and is immobilized. In 3-4 days larvae hatch out of the laid on the caterpillar eggs. The larvae feed on the contents of the caterpillars for 4-5 days, then pupate and after 6-8 days an adult insect leaves the cocoon. The development of one generation lasts 13-16 days, one cocoon includes one parasite. 1,000 large bee moth caterpillars used for infection provide on average 5.8-6.0 thousand cocoons, of which an average of 4.5-4.7 thousand parasites fly out.


AGRICA ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 39-48
Author(s):  
Yustina Maria Silvia Wonga Puu

Cocoa pod borer Conomorpha cramerella snellen (lepidoptera: gracillaridae) is one type of the key pest which is highly responsible for drilling cocoa, which then causes the production and quality of cacao to decrease. The use of entomopathogenic fungus is one of the alternatives to cope with it. By invecting and developing within the insect, such a fungus can cause the insect to suffer from diseases which will then be responsible for their death. Beauveria bassiana are types of the entomopathogenic fungus which are used for controlling cocoa pod corer, as they are able to infect the pest trough the enzyme or toxin produced, which then leads to its death. This study aims at an effectiveness test of entomopathogenic fungus Beauveria bassiana against cocoa pod borer. This research was conducted at the Laboratory Udaya University in Bali from May to November 2010. The experimental design employed was randomized complete block design (RCBD) wich was made up of four treatments such as B0 (Control), B1 (B. bassiana in which the spore density was 105 spora/ml/); B2 (B, bassiana in which the spore density 106 spora/ml); B3 (B. bassiana in which the spore density was 107 spora/ml).  The result shows that the Larvae CPB which was infected by B. bassiana shows different treatments and responses than control. The fastest death of the larvae CPB took place on the treatments and responses than control. The fastest death of the larvae CPB took place on the treatment of B. bassiana in which spore density 107. The fastest appearance of spore took place on the treatment five days after inoculation. The fungus of B. bassiana at the spore speed of 105 and 107 caused all the larvae CPB 100% to die at five days inoculation.


2013 ◽  
Vol 13 (1) ◽  
pp. 18
Author(s):  
W. Setiawati ◽  
N. Gunaeni ◽  
T. S. Uhan ◽  
A. Hasyim

Bemisia tabaci (Gen.) (Homoptera: Aleyrodidae) is one of the most serious pests on tomato. It is mainly controlled by chemi-cal means, requiring some 25 sprays during the average growing season. The extensive and repeated use of insecticides has dis-rupted the natural balance between this pest and its natural enemies. In this study, Menochilus sexmaculatus F. was evalu-ated as a possible biological control agent of B. tabaci and its effect on Gemini virus infestation. The study was conducted at the experimental station of the Indonesian Vegetables Research Institute (IVeGRI) in Lembang, West Java (1,250 m above sea level) from August to December 2008. The experimental plots consisted of 0.35 ha of tomato (± 100 m2 per plot) and spatially separated with four rows of maize (a minimum of 1 m) inter-plot distance to prevent cross-contamination among plots. The experiment was arranged in completely randomized block design with eight treatments and four replications. M. sexmaculatus were released at 24 days after planting. The treatments were designed according dosages and schedules at three released populations (i.e. 10 predators per plot, 20 predators per plot, and 10 predators per plot at vegetative stage followed by 20 predators per plot at generative stage); two places of release (center and edge of the plot); and two schedules of release (weekly and biweekly). Efficacy of the predator was measured in terms of the density of B. tabaci, both before and after release of the predator and its effect on Gemini virus infestation. The result indicated the potential use of M. sexmaculatus to control B. tabaci and its effect on Gemini virus infestation on tomato. Reductions in B. tabaci populations and subsequent tomato yields were significant. B. tabaci population in plots receiving 10 predators showed 73.62% and 75.75% reductions by the end of experiment. The incidence and intensity of Gemini virus were consistently and significantly lowest and tomato yield gain was observed when 10 predators were released at weekly intervals. It is suggested that release of M. sexmaculatus against B. tabaci on tomato may be offered as an alternative solution to increase implementation of biologically-based B. tabaci management. <br /><br />


AGRICA ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 142-153
Author(s):  
NI MADE DELLY RESIANI

This research is aimed to find out the preference of cocoa pod borer to diameter, biophysical, and biochemistry cocoa pod; the percentage of infested pods, percentage of seed damaged, and percentage of yield lost. In addition, this research is also aimed to assess the effect of plastic thickness on cacao pod rot disease, the effect of sheathing on the black ant and mealybug populations on pods. This research was conducted at Selemadeg District, Tabanan Regency from October 2009 until January 2010. The field trial was arranged into randomized complete block design (RCBD) by 15 treatments were sheathing with various thickness of plastics (S0-S4) and cocoa pod diameters (B1-B3). The results indicated that, based on the percentage of the infested pod, cocoa pod borer has preferred the fruit with diameter > 4.5-7.5 cm. This condition may be contrasted, the smallest pod size (3,5-4,5 cm) was the healthiest pod, even though it contains more nutritionally compound. The smaller pod rot disease in red and green types. Sheathing by plastic of > 0.02 mm thick in medium size of pods was the most effective to prevent cocoa pod borer infestation. Sheathing with plastic was not affecting the population of both black ants and mealy bugs. Based on these results, it can be suggested that sheathing with plastic of > 0.02 mm thick on medium size of the pod is promising control measure to prevent yield lost caused by cocoa pod borer and cocoa pot rot disease.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 211-212
Author(s):  
Lauren L Kovanda ◽  
Jungjae Park ◽  
Yijie He ◽  
Sangwoo Park ◽  
Ruochen Wu ◽  
...  

Abstract Enterotoxigenic Escherichia coli (ETEC) F4 and F18 are the two most dominant pathogenic strains in weaned pigs. The objective of this experiment was to test the effects of dietary monobutyrin and monovalerin on performance and systemic immunity of weanling piglets coinfected with F4/F18 ETEC. Twenty weaned pigs (8.21 ± 1.23 kg) were individually housed and were randomly allotted to one of three diets: control (n = 6), 0.1% monobutyrin (n = 7), or 0.1% monovalerin (n = 7). The experiment was conducted 14 days, including 7 days’ adaption and 7 days post-inoculation (PI). On d 0, d 1, and d 2 PI, pigs were inoculated with 0.5 × 109 CFU/1.5 mL each of F4 and F18 ETEC for three consecutive days. Diarrhea score was recorded daily to determine frequency of diarrhea. Piglets and feeders were weighed throughout the trial to analyze growth performance. Fecal cultures from pigs on d 0, 2, and 4 PI were inspected to identify the absence or presence of hemolytic coliforms. Blood was collected on d 0, 4, and 7 PI for complete blood cells count. All data were analyzed by the Proc Mixed of SAS with randomized complete block design. Pigs supplemented with monovalerin and monobutyrin had numerically higher ADG (249 and 282 g/day) from d 0 to d 7 PI than pigs in control (198 g/day). Supplementation of monovalerin reduced (P &lt; 0.05) frequency of diarrhea throughout the experiment. Pigs fed monovalerin had lower (P &lt; 0.05) neutrophil counts on d 4 PI compared with control. Hemolytic coliforms were observed in all fecal cultures from d 2 and d 4 PI, confirming fecal shedding of ETEC. Results of this study indicate the potential benefits of monovalerin supplementation on performance and disease resistance of weaned pigs coinfected with F4 and F8 ETEC.


2020 ◽  
Vol 6 (1) ◽  
pp. 29
Author(s):  
Bamisope Steve Bamisile ◽  
Komivi Senyo Akutse ◽  
Chandra Kanta Dash ◽  
Muhammad Qasim ◽  
Luis Carlos Ramos Aguila ◽  
...  

The inoculation methods, the fungal strains, and several other factors are known to influent the success of fungal entomopathogens colonization in plants. The physiological status of the plant could also be another determinant. In the present study, the ability of three strains of Beauveria bassiana and one strain of Metarhizium anisopliae to successfully colonize Citrus limon plants and the influence of seedling age on endophytic colonization success was examined. Three, 4, and 6 months old seedlings were inoculated with 10 mL of 1 × 108 conidial·mL−1 suspensions of each of the four fungal strains via foliar spraying. All fungal strains successfully colonized citrus seedlings and were sustained up to 2 months in colonized plants irrespective of the seedling age, with differences in the mean percentage colonization recorded at various post-inoculation periods among the fungal strains. The highest percent endophytic fungi recovery rate was recorded in the 3 months old seedlings, where fungal mycelia of inoculated fungi were successfully re-isolated from 65.6% of the untreated newly developed leaf and stem tissues. One strain of B. bassiana, BB Fafu-12, significantly improved seedling height and leaf number. The study demonstrates the influence of seedling age on B. bassiana and M. anisopliae successful colonization in the citrus plant.


Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 999-1004 ◽  
Author(s):  
L. E. del Rio ◽  
C. A. Martinson ◽  
X. B. Yang

Field studies were conducted to evaluate the effectiveness of Sporidesmium sclerotivorum to control Sclerotinia stem rot of soybean (SSR) at Ames, Humboldt, and Kanawha, IA, between 1996 and 1998. Experimental plots (3 × 3 m) were infested with S. sclerotivorum macroconidia once at a rate of 0, 2, or 20 spores per cm2 in the fall of 1995 or the spring of 1996, under two crop rotation schemes. A randomized complete block design with four replications in each location was used. Plots infested with 20 spores per cm2 had 62% less SSR (P = 0.05) than control plots at Humboldt in 1996. No differences were detected between fall and spring applications. In 1998, plots treated with either 2 or 20 spores per cm2 had 51 to 63% less SSR (P = 0.05) than control plots at Ames and Kanawha. In 1998, SSR was completely suppressed in all plots at Humboldt, while the commercial field surrounding the experimental plots had 17% SSR. S. sclerotivorum was retrieved from all infested plots at all locations 2 years after infestation with sclerotia of Sclerotinia sclerotiorum as bait. At Humboldt, S. sclerotivorum was also retrieved from control plots. Two larger plots (10 × 10 m) were infested with 20 or 100 spores per cm2 in the fall of 1996 or spring of 1997 in six commercial fields. SSR incidence, which was measured in transects up to 20 m from the infested area at 5-m intervals, was reduced 56 to 100% (P = 0.05) in four fields compared with the surrounding uninfested areas in the commercial fields. Dispersal of the control agent was evident by the fact that SSR incidence gradually increased from the edge of the infested macroplots up to about 10 m into noninoculated areas of the commercial field. This paper constitutes the first report describing the biocontrol of a disease on field crops that may be employed economically.


Author(s):  
Ines Borgi ◽  
Jean-William Dupuy ◽  
Imen Blibech ◽  
Delphine Lapaillerie ◽  
Anne-Marie Lomenech ◽  
...  

2020 ◽  
Vol 8 (6) ◽  
pp. 730-742
Author(s):  
Manish Dhawan ◽  
◽  
Neelam Joshi ◽  
Samandeep Kaur ◽  
Saroop Sandhu ◽  
...  

Intensive crop production and extensive use of harmful synthetic chemical pesticides create numerous socio-economic problems worldwide. Therefore, sustainable solutions are needed for insect pest control, such as biological control agents. The fungal insect pathogen Beauveria bassiana has shown considerable potential as a biological control agent against a broad range of insects. The insight into the virulence mechanism of B. bassiana is essential to show the robustness of its use. B. bassiana has several determinants of virulence, including the production of cuticle-degrading enzymes (CDEs), such as proteases, chitinases, and lipases. CDEs are essential in the infection process as they hydrolyze the significant components of the insect's cuticle. Moreover, B. bassiana has evolved effective antioxidant mechanisms that include enzyme families that act as reactive oxygen species (ROS) scavengers, e.g., superoxide dismutases, catalases, peroxidases, and thioredoxins. In B. bassiana, the number of CDEs and antioxidant enzymes are characterized in recent years. These enzymes are believed to be crucial player of evolutionary process in this organism and their role in various mechanism of biological control. Recent discoveries have significantly increased our potential understanding on several potentially wanted unknown mechanisms of B. bassiana infection. This review focuses on the progress detailed in the studies of these enzymes and provides an overview of enzymatic activities and their contributions to virulence.


Sign in / Sign up

Export Citation Format

Share Document