Phospholipase A activity and the biocontrol potential of Trichoderma harzianum and Trichoderma atroviride

Author(s):  
Mariana C. Minchiotti ◽  
Laura I. Vargas ◽  
Ricardo R. Madoery
2017 ◽  
Vol 57 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Zeinab Fotoohiyan ◽  
Saeed Rezaee ◽  
Gholam Hosein Shahidi Bonjar ◽  
Amir Hossein Mohammadi ◽  
Mohammad Moradi

Abstract Verticillium wilt caused by Verticillium dahliae, is one of the most devastating diseases in pistachio orchards in the world including Iran. In search for an effective non-chemical strategy for the management of this disease, we evaluated the biocontrol potential of Trichoderma harzianum isolates obtained from the rhizosphere of healthy pistachio trees in different locations of the Kerman province of Iran against V. dahliae under laboratory and greenhouse conditions. Dual culture tests in the laboratory were conducted in a completely randomized design using 72 T. harzianum isolates. Twenty isolates showed the highest in vitro antagonistic activity. The results indicated that all 20 isolates were capable of inhibiting the mycelial growth of V. dahliae significantly. Among them, isolates Tr8 and Tr19 were the most effective by 88.89% and 85.12% inhibition, respectively. Extracted cell free metabolites of all effective isolates also inhibited the growth of V. dahliae in the culture medium significantly. According to the results, isolates Tr4 and Tr6 inhibited fungal pathogen growth by 94.94% and 88.15% respectively, through production of non-volatile metabolites. In the evaluation of volatile metabolites, isolates Tr5 and Tr4 were the most effective by 26.27% and 24.49% growth inhibition, respectively. Based on the results of the in vitro experiments, the five most effective isolates were selected for evaluation under greenhouse conditions for their biocontrol potential in controlling Verticillium wilt of pistachio. Results of the greenhouse, (in vivo) experiments were positive and indicated that the occurrence of wilt disease in plants treated with the antagonists alone or in combination with pathogenic fungus was lower than in plants inoculated with pathogen alone. The overall results of this study suggest that Trichoderma fungal antagonist may be an effective biocontrol agent for the control of Verticillium wilt of pistachio.


Biotecnia ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 127-134
Author(s):  
Ana Claudia Sánchez-Espinosa ◽  
José Luis Villarruel-Ordaz ◽  
Luis David Maldonado Bonilla

Bananas are important crops in developing countries with tropical climate. In Mexico, the banana production has increased, and it must be guaranteed. The Panama disease, caused by the fungus Fusarium oxysporum f.sp. cubense threatens the current banana production, for what is necessary to implement methods to protect this crop. Fungi from genus Trichoderma are natural residents of the rhizosphere. This genus comprises mycoparasite species used to control diseases caused by phytopathogenic fungi, and also benefit plant development. In this report, we present data of the identification and characterization of the novel strain Trichoderma harzianum M110 that displays antagonism and biocontrol potential in laboratory conditions. Exploration of the rhizosphere and the endophytic microbial communities might help to identify microbes adapted to banana plants that can be incorporated in organic biological control formulations that ensure production of Fusarium-free plants and healthy fruits with export quality.


2021 ◽  
Vol 7 (9) ◽  
pp. 751
Author(s):  
Hamza Chammem ◽  
Livio Antonielli ◽  
Andrea Nesler ◽  
Massimo Pindo ◽  
Ilaria Pertot

Wood pellets can sustain the growth of Trichoderma spp. in soil; however, little is known about their side effects on the microbiota. The aims of this study were to evaluate the effect of wood pellets on the growth of Trichoderma spp. in bulk soil and on the soil microbial population’s composition and diversity. Trichoderma atroviride SC1 coated wood pellets and non-coated pellets were applied at the level of 10 g∙kg−1 of soil and at the final concentration of 5 × 103 conidia∙g−1 of soil and compared to a conidial suspension applied at the same concentration without the wood carrier. Untreated bulk soil served as a control. The non-coated wood pellets increased the total Trichoderma spp. population throughout the experiment (estimated as colony-forming unit g−1 of soil), while wood pellets coated with T. atroviride SC1 did not. The wood carrier increased the richness, and temporarily decreased the diversity, of the bacterial population, with Massilia being the most abundant bacterial genus, while it decreased both the richness and diversity of the fungal community. Wood pellets selectively increased fungal species having biocontrol potential, such as Mortierella, Cladorrhinum, and Stachybotrys, which confirms the suitability of such carriers of Trichoderma spp. for soil application.


2021 ◽  
Vol 70 (2) ◽  
pp. 189-199
Author(s):  
DENGYUN ZHANG ◽  
JINDE YU ◽  
CHANGLE MA ◽  
LEI KONG ◽  
CHENGZHONG HE ◽  
...  

Pestalotiopsis sp. is a mycoparasite of the plant pathogen Aecidium wenshanense. To further understand the mycoparasitism mechanism of Pestalotiopsis sp., we assembled and analyzed its genome. The genome of Pestalotiopsis sp. strain PG52 was assembled into 335 scaffolds and had a size of 58.01 Mb. A total of 20,023 predicted genes and proteins were annotated. This study compared PG52 with the mycoparasites Trichoderma harzianum, Trichoderma atroviride, and Trichoderma virens. This study reveals the entirely different mycoparasitism mechanism of Pestalotiopsis compared to Trichoderma and reveals this mycoparasite’s strong ability to produce secondary metabolites.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Maria Lucia Garcia Simoes ◽  
Samia Maria Tauk-Tornisielo ◽  
Givaldo Rocha Niella ◽  
Daniel Mario Tapia Tapia

Trichoderma species , isolated from different producer regions of cocoa (Bahia, Brazil), were evaluated as for their capacity of usage in the biocontrol of the basidiomycete Moniliophthora perniciosa subgroup 1441, which causes the witches’ broom in cocoa. The isolates of Trichoderma were evaluated through individual indices so called %AP (Antagonistic Potential to Moniliophthora perniciosa subgroup 1441), %PG (Potential Growth in vitro) and %PSPr (Potential of Spore Production on rice) These indices were evaluated together, also they were used for the determination of Biological Control Potential (%BCP) of each antagonistic specie to the evaluated pathogen. Afterwards, the ability of the antagonistic to colonize and to produce spores on sterilized dry brooms was also evaluated. Some of the isolates Trichoderma spp showed a high %AP to the pathogen and high %PG, but did not present a significant %PSPr, turning impossible the spore production for biocontrol at commercial level. Significant differences were found within the individual indices among the species and isolates of the same species of Trichoderma spp, pointing out a great genetic variability among them. Trichoderma harzianum 911 showed to have the best biocontrol potential to the pathogen when compared to the other isolates, presenting a %BCP de 91.86% (mainly by the high %AP of 97,76%) a %PSPr of 99.53%, also producing 22.67 spores x 109. mL-1 by dry broom segment. Trichoderma harzianum 911 showed to be as promising isolate for future researches on biocontrol of cocoa witches’ broom.


2000 ◽  
Vol 66 (5) ◽  
pp. 2232-2234 ◽  
Author(s):  
Cornelia Kullnig ◽  
Robert L. Mach ◽  
Matteo Lorito ◽  
Christian P. Kubicek

ABSTRACT A plate confrontation experiment is commonly used to study the mechanism by which Trichoderma spp. antagonize and parasitize other fungi. Previous work with chitinase gene expression (ech42) during the precontact period of this process in which cellophane and dialysis membranes separated Trichoderma harzianum and its host Rhizoctonia solani resulted in essentially opposite results. Here, we show that cellophane membranes are permeable to proteins up to at least 90 kDa in size but that dialysis membranes are not. ech42 was expressed during the precontact stage of the confrontation between Trichoderma atroviride and its host only if the cellophane was placed between the two fungi. These results are consistent with enzyme diffusion from T. atroviride to R. solani generating the trigger of ech42 gene expression.


Sign in / Sign up

Export Citation Format

Share Document