Adsorption of Methylene blue and Congo red from aqueous solution using synthesized alumina–zirconia composite

2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ajayi O. Adesina ◽  
Okoronkwo A. Elvis ◽  
Nelcy D.S. Mohallem ◽  
Sunday J. Olusegun
2019 ◽  
Vol 7 (2) ◽  
pp. 240-246
Author(s):  
Kaur Harpreet ◽  
Kaur Harpreet ◽  
Vandana Kamboj ◽  
Vandana Kamboj

Water is the most crucial thing to mankind and so its contamination by various agencies is posing a threat to the natural balance. So, in the present work, the efficiency of various adsorbents derived from plant waste, to remove different dyes from aqueous solution was evaluated. Parameters for study were contact time, concentration and pH. Various combinations of plant ashes were used for the study. It was found that adsorbent prepared from the combination of orange peels, pomegranate and banana peels ashes, exhibited good adsorption capacity for methylene blue, congo red and crystal violet. All these dyes were completely removed from the aqueous solution while methyl orange was not removed. Congo red was removed completely within 40 min of contact with the adsorbent while methyl orange took 3 hrs to be removed to the extent of 48% only. The adsorption coefficient of congo red was found to be 2.33 while value for methylene blue and crystal violet was 1 and 1.66 respectively. The characterization of adsorbent was done by Scanning Electron Microscopy and IR spectroscopy. SEM image revealed the surface of adsorbent to be made of differential pores. From the results it became evident that the low-cost adsorbent could be used as a replacement for costly traditional methods of removing colorants from water.


2013 ◽  
Vol 68 (10) ◽  
pp. 2240-2248 ◽  
Author(s):  
M. Szlachta ◽  
P. Wójtowicz

This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m2/g, MWCNTs 358 m2/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal.


2021 ◽  
Vol 1842 (1) ◽  
pp. 012047
Author(s):  
M. Nurhadi ◽  
R. Kusumawardani ◽  
M. Rindoi ◽  
A. D. Apriliani ◽  
A. F. Khair ◽  
...  

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 244-256
Author(s):  
Guobin Xu ◽  
Yuejun Zhu ◽  
Xiujun Wang ◽  
Shanshan Wang ◽  
Tianxiang Cheng ◽  
...  

AbstractA series of chitosan and Laponite based nano-composite adsorbents, which showed an excellent performance for fast and efficient removal of Cd(II), methylene blue (MB) and Congo red (CR) from aqueous solution, were prepared. In the adsorbent, with the increase of Laponite component, the surface area increased from 44.69 m2 g-1 to 64.58 m2 g-1. As a result, the adsorption rates were enhanced by increasing Laponite component. The adsorption capacities for Cd(II) and MB increased with increasing Laponite component due the cationic characteristic of two pollutants, and the opposite result was found for the removal of CR. The impacts of some factors, e.g. solution pH, temperature, pollutant concentration and salt, on the adsorption capacity were investigated. Additionally, this adsorbent could be effectively regenerated by dilute HCl solution after the adsorption of Cd(II), and the mixture of methanol and acetic acid was a suitable eluent after the adsorption of two dyes.


2019 ◽  
pp. 240-246
Author(s):  
Kaur Harpreet ◽  
Vandana Kamboj

Water is the most crucial thing to mankind and so its contamination by various agencies is posing a threat to the natural balance. So, in the present work, the efficiency of various adsorbents derived from plant waste, to remove different dyes from aqueous solution was evaluated. Parameters for study were contact time, concentration and pH. Various combinations of plant ashes were used for the study. It was found that adsorbent prepared from the combination of orange peels, pomegranate and banana peels ashes, exhibited good adsorption capacity for methylene blue, congo red and crystal violet. All these dyes were completely removed from the aqueous solution while methyl orange was not removed. Congo red was removed completely within 40 min of contact with the adsorbent while methyl orange took 3 hrs to be removed to the extent of 48% only. The adsorption coefficient of congo red was found to be 2.33 while value for methylene blue and crystal violet was 1 and 1.66 respectively. The characterization of adsorbent was done by Scanning Electron Microscopy and IR spectroscopy. SEM image revealed the surface of adsorbent to be made of differential pores. From the results it became evident that the low-cost adsorbent could be used as a replacement for costly traditional methods of removing colorants from water.


2020 ◽  
Vol 15 (2) ◽  
pp. 476-489
Author(s):  
Iis Intan Widiyowati ◽  
Mukhamad Nurhadi ◽  
Muhammad Hatami ◽  
Lai Sin Yuan

The study of TiO2-sulfonated carbon-derived from Eichhornia crassipes (TiO2/SCEC), as an effective adsorbent to remove Methylene blue (MB) and Congo red (CR) dyes from aqueous solution, has been conducted. The preparation steps of TiO2/SCEC adsorbent involved the carbonisation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation of carbon for 3 h and impregnation through titanium(IV) isopropoxide (500 µmol). The physical properties of the adsorbents were characterized by using X-ray fluorescence (XRF), Fourier transform infrared, X-ray diffraction (XRD), Scanning electron microscopy with Energy dispersive X-ray (SEM-EDX), Thermogravimetric analysis (TGA) and nitrogen adsorption-desorption studies. The dye removal study using TiO2/SCEC adsorbent was carried out by varying of contact time, adsorbent dosage, initial dye concentration, pH, particles size of adsorbent and temperature. The kinetics models were determined by the effects of contact time and the thermodynamic parameters (ΔH, ΔS, and ΔG), which were calculated by the effects of temperature. The results showed that the maximum dye removal capacity of TiO2/SCEC were 18.8 mg.g-1 for MB and 36.5 mg.g-1 for CR. The removal of MB and CR dyes using TiO2/SCEC adsorbent performed a pseudo-second order kinetic models with spontaneity. Copyright © 2020 BCREC Group. All rights reserved 


Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


Sign in / Sign up

Export Citation Format

Share Document