scholarly journals Effective TiO2-Sulfonated Carbon-derived from Eichhornia crassipes in The Removal of Methylene Blue and Congo Red Dyes from Aqueous Solution

2020 ◽  
Vol 15 (2) ◽  
pp. 476-489
Author(s):  
Iis Intan Widiyowati ◽  
Mukhamad Nurhadi ◽  
Muhammad Hatami ◽  
Lai Sin Yuan

The study of TiO2-sulfonated carbon-derived from Eichhornia crassipes (TiO2/SCEC), as an effective adsorbent to remove Methylene blue (MB) and Congo red (CR) dyes from aqueous solution, has been conducted. The preparation steps of TiO2/SCEC adsorbent involved the carbonisation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation of carbon for 3 h and impregnation through titanium(IV) isopropoxide (500 µmol). The physical properties of the adsorbents were characterized by using X-ray fluorescence (XRF), Fourier transform infrared, X-ray diffraction (XRD), Scanning electron microscopy with Energy dispersive X-ray (SEM-EDX), Thermogravimetric analysis (TGA) and nitrogen adsorption-desorption studies. The dye removal study using TiO2/SCEC adsorbent was carried out by varying of contact time, adsorbent dosage, initial dye concentration, pH, particles size of adsorbent and temperature. The kinetics models were determined by the effects of contact time and the thermodynamic parameters (ΔH, ΔS, and ΔG), which were calculated by the effects of temperature. The results showed that the maximum dye removal capacity of TiO2/SCEC were 18.8 mg.g-1 for MB and 36.5 mg.g-1 for CR. The removal of MB and CR dyes using TiO2/SCEC adsorbent performed a pseudo-second order kinetic models with spontaneity. Copyright © 2020 BCREC Group. All rights reserved 

2013 ◽  
Vol 361-363 ◽  
pp. 760-763 ◽  
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Hao Li

The adsorption capacity was compared for the dye wastewater onto adsorbent MnO2. The effects of contact time and dosage of adsorbent were studied. The adsorption kinetics was analyzed. The results showed that MnO2 possessed higher adsorption capacity to Methylene blue than Methyl orange which the removal efficiency could reached 94.82%and 78.63% respectively under the conditions (the dosage1.2g/L, time 60min, initial dye concentration 50mg/L, pH7). The dynamical data fit well with the pseudo second order kinetic model. The MnO2 has higher Methylene blue adsorption capacity in short equilibrium times and are good alternative in wastewater treatment.


2021 ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyothi Mannekote Shivanna ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Abstract In the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDX) and N2 adsorption-desorption isotherm (BET). XRD and FTIR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption-desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


2021 ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyothi Mannekote Shivanna ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Abstract In the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDX) and N2 adsorption-desorption isotherm (BET). XRD and FTIR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30°C). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption-desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

AbstractIn the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDAX) and N2 adsorption–desorption isotherm (BET). XRD and FT-IR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30 ℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption–desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


2018 ◽  
Vol 83 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Zdravka Velkova ◽  
Gergana Kirova ◽  
Margarita Stoytcheva ◽  
Velizar Gochev

Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ?G, ?S, and ?H indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.


2016 ◽  
Vol 864 ◽  
pp. 117-122 ◽  
Author(s):  
Hesni Shabrany ◽  
Hendry Tju ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

This paper discusses the catalytic activity of ZnO/CuO/nanographene platelets composites under visible light and ultrasound irradiation separately. The ZnO/CuO/nanographene platelets composites were synthesized using a sol-gel method. X-ray diffraction and nitrogen adsorption spectroscopy were employed to investigate the structural and surface area of the catalyst. The catalytic activity results showed that the presence of nanographene platelets in ZnO/CuO nanocomposites improved its efficiency in degrading methylene blue. A scavenger method was also used to understand the role of charged carriers and the active radical involved in the catalytic activity.


1996 ◽  
Vol 13 (5) ◽  
pp. 317-325 ◽  
Author(s):  
Laila B. Khalil

Ground rice husks were impregnated with phosphoric acid (30–70 wt.%) followed by carbonization at 673 or 773 K. Analysis of the nitrogen adsorption isotherms was achieved by applying the BET, DR, t- and αS-methods so as to assess the contribution of micropores and mesopores in the products. The washed products showed reasonable surface areas with dimensions in the micropore range. Adsorption of methylene blue from aqueous solution indicated high affinity and high dye removal capacity. Low iodine numbers and methylene blue values were ascribed to the high ash content extending up to 50% of the activated carbon. Pre-impregnation with 50% H3PO4 and carbonization at 400°C proved to be most effective in producing an activated carbon with the highest adsorption capacity from the gas or solution.


2021 ◽  
Vol 21 (2) ◽  
pp. 421
Author(s):  
Aldes Lesbani ◽  
Neza Rahayu Palapa ◽  
Rabelia Juladika Sayeri ◽  
Tarmizi Taher ◽  
Nurlisa Hidayati

Ni/Al layered double hydroxide was used as a starting material for composite formation with biochar as a matrix. The materials were characterized using X-ray, FTIR, nitrogen adsorption-desorption, thermal, and morphology analyses. The NiAl LDH/Biochar material is then used as an adsorbent of methylene blue from an aqueous solution. The factor that was influencing adsorption such as pH, time, methylene blue concentration, and temperature adsorption was studied systematically. The regeneration of adsorbent was performed to know the stability of NiAl LDH/Biochar under several cycle adsorption processes. The results showed that NiAl LDH/Biochar has a specific diffraction peak at 11.63° and 22.30°. NiAl LDH/Biochar has more than ten-fold surface area properties (438,942 m2/g) than biochar (50.936 m2/g), and Ni/Al layered double hydroxide (92.682 m2/g). The methylene blue adsorption on NiAl LDH/Biochar follows a pseudo-second-order kinetic adsorption model and classify as physical adsorption. The high reusability properties were found for NiAl LDH/Biochar, which was largely different from biochar and Ni/Al layered double hydroxide.


2021 ◽  
Author(s):  
Khaled Charradi ◽  
Zakarya Ahmed ◽  
Mohamed Moussa ◽  
Zyed Beji ◽  
Ameni Brahmia ◽  
...  

Abstract The spinel zinc ferrite/alkali cellulose composite has been successfully fabricated as a magnetic photocatalyst and assessed for its photocatalytic activity toward the degradation of methylene blue (MB) in an aqueous solution. The Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), thermogravimetric analysis (TGA), BET, and zeta potential were used to evaluate the magnetic photocatalyst composite and investigate its adsorption mechanism. Furthermore, the adsorption behavior of the composite was studied under various conditions. The ZnFe2O4/alkali cellulose composite effectively degraded (100%) MB after 180 min at a pH of 6.5 compared to cellulose, alkali cellulose and ZnFe2O4. The regeneration of the loaded composite was studied using the alcohol/water solution and reused upon a certain variation in the efficiency after the fourth cycle. The adsorption process was found to be consistent with the pseudo-second-order kinetic model.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 400 ◽  
Author(s):  
Inderjeet Singh ◽  
Balaji Birajdar

The mesoporous La-Na co-doped TiO2 nanoparticles (NPs) have been synthesized by non-aqueous, solvent-controlled, sol-gel route. The substitutional doping of large sized Na+1 and La+3 at Ti4+ is confirmed by X-ray diffraction (XRD) and further supported by Transmission Electron Microscopy (TEM) and X-ray Photo-electron Spectroscopy (XPS). The consequent increase in adsorbed hydroxyl groups at surface of La-Na co-doped TiO2 results in decrease in pHIEP, which makes nanoparticle surface more prone to cationic methylene blue (MB) dye adsorption. The MB dye removal was examined by different metal doping, pH, contact time, NPs dose, initial dye concentration and temperature. Maximum dye removal percentage was achieved at pH 7.0. The kinetic analysis suggests adsorption dynamics is best described by pseudo second-order kinetic model. Langmuir adsorption isotherm studies revealed endothermic monolayer adsorption of Methylene Blue dye.


Sign in / Sign up

Export Citation Format

Share Document