Evaluation of biocidal properties of biodegradable nanofiber filters and their use in face masks

2021 ◽  
pp. 1-23
Author(s):  
Daniela S. de Almeida ◽  
Fabio A.P. Scacchetti ◽  
Roberta Santos ◽  
Monica Lopes Aguiar ◽  
Alexandra Beal ◽  
...  
Keyword(s):  
2019 ◽  
Vol 14 ◽  
pp. 155892501984322 ◽  
Author(s):  
Chengbo Huang ◽  
Ying Liu ◽  
Zhiguang Li ◽  
Rong Li ◽  
Xuehong Ren ◽  
...  

The main objective of this study was to develop antibacterial materials based on polyacrylonitrile for potential application in protective face masks to combat airborne pathogens. To achieve biocidal properties, 1-chloro-2, 2, 5, 5-tetramethyl-4-imidazolidinone as a kind of N-halamine was introduced into the polyacrylonitrile nanofibers by an electrospinning technique to form nanofibers by an electrospinning technique to form polyacrylonitrile/1-chloro-2, 2, 5, 5-tetramethyl-4-imidazolidinone-5% nanofibers. Scanning electron microscopy and Fourier transformed infrared spectroscopy were employed to characterize the structure of nanofibers. The antimicrobial efficacies of electrospinning nanofibers with 1-chloro-2, 2, 5, 5-tetramethyl-4-imidazolidinone against both Staphylococcus aureus and Escherichia coli O157:H7 were evaluated at different contact times. The antimicrobial efficacies against bioaerosol of S. aureus were also performed. The polyacrylonitrile/1-chloro-2, 2, 5, 5-tetramethyl-4-imidazolidinone-5% nanofibers possess excellent antimicrobial efficacies against bacteria bioaersol, and it has good air permeability.


Sign in / Sign up

Export Citation Format

Share Document