The effect of immediate decreasing of weight bearing asymmetry on quiet standing postural control in individuals with chronic stroke

2017 ◽  
Vol 33 (10) ◽  
pp. 751-757 ◽  
Author(s):  
Mania Sheikh ◽  
Mahmoud Reza Azarpazhooh ◽  
Hossein Asghar Hosseini
2008 ◽  
Vol 89 (10) ◽  
pp. e39
Author(s):  
Avril Mansfield ◽  
Cynthia Danells ◽  
John Zettle ◽  
Sandra Black ◽  
William McIlroy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David F. Rusaw ◽  
Rasmus Alinder ◽  
Sigurd Edholm ◽  
Karin L. L. Hallstedt ◽  
Jessika Runesson ◽  
...  

AbstractMethods used to assess quiet standing in unilateral prosthesis users often assume validity of an inverted pendulum model despite this being shown as invalid in some instances. The aim of the current study was to evaluate the validity of a proposed unilaterally-constrained pin-controller model in explaining postural control in unilateral prosthesis users. Prosthesis users were contrasted against the theoretical model as were able-bodied controls that stood on a platform which unilaterally constrained movement of the CoP. All participants completed bouts of quiet standing with eyes open, eyes closed and with feedback on inter-limb weight bearing asymmetry. Correlation coefficients were used to infer inverted pendulum behavior in both the anteroposterior and mediolateral directions and were derived from both kinematic (body attached markers) and kinetic (centre of pressure) experimental data. Larger, negative correlation coefficients reflected better model adherence, whilst low or no correlation reflected poorer model adherence. Inverted pendulum behavior derived from kinematic data, indicated coefficients of high magnitude in both mediolateral (all cases range 0.71–0.78) and anteroposterior (0.88–0.91) directions, irrespective of groups. Inverted pendulum behavior derived from kinetic data in the anteroposterior direction indicated validity of the model with large negative coefficients associated with the unconstrained/intact limbs (prosthesis users: − 0.45 to − 0.65, control group: − 0.43 to − 0.72), small coefficients in constrained/prosthetic limbs (prosthesis users: − 0.02 to 0.07, control group: 0.13–0.26) and large negative coefficients in combined conditions (prosthesis users: − 0.36 to − 0.56, control group: − 0.71 to − 0.82). For the mediolateral direction, coefficients were negligible for individual limbs (0.03–0.17) and moderate to large negative correlations, irrespective of group (− 0.31 to − 0.73). Data suggested both prosthesis users’ and able-bodied individuals’ postural control conforms well to that predicted by a unilaterally-constrained pin-controller model, which has implications for the fundamental control of posture in transtibial prosthesis users.


2017 ◽  
Vol 26 (3) ◽  
pp. 239-244 ◽  
Author(s):  
Cameron J. Powden ◽  
Kathleen K. Hogan ◽  
Erik A. Wikstrom ◽  
Matthew C. Hoch

Context:Talocrural joint mobilizations are commonly used to address deficits associated with chronic ankle instability (CAI).Objective:Examine the immediate effects of talocrural joint traction in those with CAI.Design:Blinded, crossover.Setting:Laboratory.Participants:Twenty adults (14 females; age = 23.80 ± 4.02 y; height = 169.55 ± 12.38 cm; weight = 78.34 ± 16.32 kg) with self-reported CAI participated. Inclusion criteria consisted of a history of ≥1 ankle sprain, ≥2 episodes of giving way in the previous 3 mo, answering “yes” to ≥4 questions on the Ankle Instability Instrument, and ≤24 on the Cumberland Ankle Instability Tool.Intervention:Subjects participated in 3 sessions in which they received a single treatment session of sustained traction (ST), oscillatory traction (OT), or a sham condition in a randomized order. Interventions consisted of four 30-s sets of traction with 1 min of rest between sets. During ST and OT, the talus was distracted distally from the ankle mortise to the end-range of accessory motion. ST consisted of continuous distraction and OT involved 1-s oscillations between the mid and end-range of accessory motion. The sham condition consisted of physical contact without force application. Preintervention and postintervention measurements of weight-bearing dorsiflexion, dynamic balance, and static single-limb balance were collected.Main Outcome Measures:The independent variable was treatment (ST, OT, sham). The dependent variables included pre-to-posttreatment change scores for the WBLT (cm), normalized SEBTAR (%), and time-to-boundary (TTB) variables(s). Separate 1-way ANOVAs examined differences between treatments for each dependent variable. Alpha was set a priori at P < .05.Results:No significant treatment effects were identified for any variables.Conclusion:A single intervention of ST or OT did not produce significant changes in weight-bearing dorsiflexion range of motion or postural control in individuals with CAI. Future research should investigate the effects of repeated talocrural traction treatments and the effects of this technique when combined with other manual therapies.


2017 ◽  
Vol 53 ◽  
pp. 5-10 ◽  
Author(s):  
Digna de Kam ◽  
Jip. F. Kamphuis ◽  
Vivian Weerdesteyn ◽  
Alexander C.H. Geurts

1999 ◽  
Vol 9 (4) ◽  
pp. 277-286 ◽  
Author(s):  
Mark G. Carpenter ◽  
James S. Frank ◽  
Cathy P. Silcher

One possible factor influencing the control of upright stance is the perceived threat to one's personal safety, i.e. balance confidence. We explored this factor by examining the control of stationary stance when standing on an elevated platform under various conditions of reduced visual and vestibular inputs. Twenty-eight adults (14 male and 14 female, mean age = 23.5 years) participated in the experiment. Postural control was examined by recording the amplitude variability (RMS) and mean power frequency (MPF) of center of pressure excursions (COP) over a 2-minute interval while participants stood in a normal stance on a low (0.19 m) and a high (0.81 m) platform with toes positioned either at or away from the edge of the platform. Vision was manipulated through eyes open and eyes closed trials. Vestibular input was reduced by tilting the head into extension [1]. Anterior-posterior RMS and MPF of COP were significantly influenced by an interaction between surface height and vision. When vision was available, a significant decrease in RMS was observed during quiet standing on a high surface compared to a low surface independent of step restriction. When vision was available MPF increased when subjects were raised from a low to a high surface. The mean position of the COP was significantly influenced by an interaction between height and step restriction. Differences in RMS and MPF responses to height manipulation were observed between genders in eyes closed conditions. Vestibular input influenced postural control at both low and high levels with significant increases in RMS when vestibular input was reduced. The reciprocal changes observed in RMS and MPF suggest modifications to postural control through changes in ankle stiffness. Vision appears to play a role in increasing ankle stiffness when balance confidence is compromised.


Sign in / Sign up

Export Citation Format

Share Document