Surface height effects on postural control: A hypothesis for a stiffness strategy for stance*

1999 ◽  
Vol 9 (4) ◽  
pp. 277-286 ◽  
Author(s):  
Mark G. Carpenter ◽  
James S. Frank ◽  
Cathy P. Silcher

One possible factor influencing the control of upright stance is the perceived threat to one's personal safety, i.e. balance confidence. We explored this factor by examining the control of stationary stance when standing on an elevated platform under various conditions of reduced visual and vestibular inputs. Twenty-eight adults (14 male and 14 female, mean age = 23.5 years) participated in the experiment. Postural control was examined by recording the amplitude variability (RMS) and mean power frequency (MPF) of center of pressure excursions (COP) over a 2-minute interval while participants stood in a normal stance on a low (0.19 m) and a high (0.81 m) platform with toes positioned either at or away from the edge of the platform. Vision was manipulated through eyes open and eyes closed trials. Vestibular input was reduced by tilting the head into extension [1]. Anterior-posterior RMS and MPF of COP were significantly influenced by an interaction between surface height and vision. When vision was available, a significant decrease in RMS was observed during quiet standing on a high surface compared to a low surface independent of step restriction. When vision was available MPF increased when subjects were raised from a low to a high surface. The mean position of the COP was significantly influenced by an interaction between height and step restriction. Differences in RMS and MPF responses to height manipulation were observed between genders in eyes closed conditions. Vestibular input influenced postural control at both low and high levels with significant increases in RMS when vestibular input was reduced. The reciprocal changes observed in RMS and MPF suggest modifications to postural control through changes in ankle stiffness. Vision appears to play a role in increasing ankle stiffness when balance confidence is compromised.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5101 ◽  
Author(s):  
Krzysztof Kręcisz ◽  
Michał Kuczyński

To investigate how additional visual feedback (VFB) affects postural stability we compared 20-sec center-of-pressure (COP) recordings in two conditions: without and with the VFB. Seven healthy adult subjects performed 10 trials lasting 20 seconds in each condition. Simultaneously, during all trials the simple auditory reaction time (RT) was measured. Based on the COP data, the following sway parameters were computed: standard deviation (SD), mean speed (MV), sample entropy (SE), and mean power frequency (MPF). The RT was higher in the VFB condition (p < 0.001) indicating that this condition was attention demanding. The VFB resulted in decreased SD and increased SE in both the medial-lateral (ML) and anterior-posterior (AP) planes (p < .001). These results account for the efficacy of the VFB in stabilizing posture and in producing more irregular COP signals which may be interpreted as higher automaticity and/or larger level of noise in postural control. The MPF was higher during VFB in both planes as was the MV in the AP plane only (p < 0.001). The latter data demonstrate higher activity of postural control system that was caused by the availability of the set-point on the screen and the resulting control error which facilitated and sped up postural control.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Reza Rahimzadeh Khiabani ◽  
George Mochizuki ◽  
Farooq Ismail ◽  
Chris Boulias ◽  
Chetan P. Phadke ◽  
...  

Background. Balance impairments, falls, and spasticity are common after stroke, but the effect of spasticity on balance control after stroke is not well understood.Methods. In this cross-sectional study, twenty-seven participants with stroke were divided into two groups, based on ankle plantar flexor spasticity level. Fifteen individuals with high spasticity (Modified Ashworth Scale (MAS) score of ≥2) and 12 individuals with low spasticity (MAS score <2) completed quiet standing trials with eyes open and closed conditions. Balance control measures included centre of pressure (COP) root mean square (RMS), COP velocity, and COP mean power frequency (MPF) in anterior-posterior and mediolateral (ML) directions. Trunk sway was estimated using a wearable inertial measurement unit to measure trunk angle, trunk velocity, and trunk velocity frequency amplitude in pitch and roll directions.Results. The high spasticity group demonstrated greater ML COP velocity, trunk roll velocity, trunk roll velocity frequency amplitude at 3.7 Hz, and trunk roll velocity frequency amplitude at 4.9 Hz, particularly in the eyes closed condition (spasticitybyvisioninteraction). ML COP MPF was greater in the high spasticity group.Conclusion. Individuals with high spasticity after stroke demonstrated greater impairment of balance control in the frontal plane, which was exacerbated when vision was removed.


2014 ◽  
Vol 94 (10) ◽  
pp. 1489-1498 ◽  
Author(s):  
Charlotte M. Hunt ◽  
Gail Widener ◽  
Diane D. Allen

Background People with multiple sclerosis (MS) have diminished postural control, and center of pressure (COP) displacement varies more in this population than in healthy controls. Balance-based torso-weighting (BBTW) can improve clinical balance and mobility in people with MS, and exploration using both linear and nonlinear measures of COP may help determine whether BBTW optimizes movement variability. Objective The aim of this study was to investigate the effects of BBTW on people with MS and healthy controls during quiet standing. Design This was a quasi-experimental study comparing COP variability between groups, between eye closure conditions, and between weighting conditions in the anterior-posterior and medial-lateral directions. Methods Twenty participants with MS and 18 healthy controls stood on a forceplate in 4 conditions: eyes open and closed and with and without BBTW. Linear measures of COP displacement included range and root mean square (RMS). Nonlinear measures included approximate entropy (ApEn) and Lyapunov exponent (LyE). Three-way repeated-measures analyses of variance compared measures across groups and conditions. The association between weighting response and baseline nonlinear variables was examined. When significant associations were found, MS subgroups were created and compared. Results The MS and control groups had significantly different range, RMS, and ApEn values. The eyes-open and eyes-closed conditions had significantly different range and RMS values. Change with weighting correlated with LyE (r=−.70) and ApEn (r=−.59). Two MS subgroups, with low and high baseline LyE values, responded to BBTW in opposite directions, with a significant main effect for weighting condition for the LyE variable in the medial-lateral direction. Limitations The small samples and no identification of impairments related to LyE at baseline were limitations of the study. Conclusions The LyE may help differentiate subgroups who respond differently to BBTW. In both subgroups, LyE values moved toward the average of healthy controls, suggesting that BBTW may help optimize movement variability in people with MS.


Motor Control ◽  
2015 ◽  
Vol 19 (1) ◽  
pp. 10-24 ◽  
Author(s):  
Murielle Grangeon ◽  
Cindy Gauthier ◽  
Cyril Duclos ◽  
Jean-Francois Lemay ◽  
Dany Gagnon

The study aimed to (1) compare postural stability between sitting and standing in healthy individuals and (2) define center-of-pressure (COP) measures during sitting that could also explain standing stability. Fourteen healthy individuals randomly maintained (1) two short-sitting positions with eyes open or closed, with or without hand support, and (2) one standing position with eyes open with both upper limbs resting alongside the body. Thirty-six COP measures based on time and frequency series were computed. Greater COP displacement and velocity along with lower frequency measures were found for almost all directional components during standing compared with both sitting positions. The velocity, 95% confidence ellipse area, and centroidal frequency were found to be correlated between unsupported sitting and standing. Despite evidenced differences between sitting and standing, similarities in postural control were highlighted when sitting stability was the most challenging. These findings support further investigation between dynamic sitting and standing balance.


2021 ◽  
Vol 4 (1) ◽  
pp. 013-022
Author(s):  
Blanchet Mariève ◽  
Prince François ◽  
Lemay Martin ◽  
Chouinard Sylvain ◽  
Messier Julie

We explored if adolescents with Gilles de la Tourette syndrome (GTS) had functional postural control impairments and how these deficits are linked to a disturbance in the processing and integration of sensory information. We evaluated the displacements of the center of pressure (COP) during maximal leaning in four directions (forward, backward, rightward, leftward) and under three sensory conditions (eyes open, eyes closed, eyes closed standing on foam). GTS adolescents showed deficits in postural stability and in lateral postural adjustments but they had similar maximal COP excursion than the control group. The postural performance of the GTS group was poorer in the eyes open condition (time to phase 1 onset, max-mean COP). Moreover, they displayed a poorer ability to maintain the maximum leaning position under the eyes open condition during mediolateral leaning tasks. By contrast, during forward leaning, they showed larger min-max ranges than control subjects while standing on the foam with the eyes closed. Together, these findings support the idea that GTS produces subclinical postural control deficits. Importantly, our results suggest that postural control disorders in GTS are highly sensitive to voluntary postural leaning tasks which have high demand for multimodal sensory integration.


2021 ◽  
Vol 77 (1) ◽  
pp. 51-59
Author(s):  
Agnieszka Opala-Berdzik ◽  
Magdalena Głowacka ◽  
Kajetan J. Słomka

Abstract The aim of this study was to determine whether young adolescent female artistic gymnasts demonstrate better functional stability than age- and sex-matched non-athletes. Different characteristics of the gymnasts’ postural control were expected to be observed. Twenty-two 10- to 13-year-old healthy females (ten national-level artistic gymnasts and twelve non-athletes) participated in the study. To assess their forward functional stability, the 30-s limit of stability test was performed on a force plate. The test consisted of three phases: quiet standing, transition to maximal forward leaning, and standing in the maximal forward leaning position. Between-group comparisons of the directional subcomponents of the root mean squares and mean velocities of the center of pressure and rambling-trembling displacements in two phases (quiet standing and standing in maximal leaning) were conducted. Moreover, anterior stability limits were compared. During standing in maximal forward leaning, there were no differences in the center of pressure and rambling measures between gymnasts and non-athletes (p > 0.05). The values of trembling measures in both anterior-posterior and medial-lateral directions were significantly lower in gymnasts (p < 0.05). Both groups presented similar values for anterior stability limits (p > 0.05). The comparisons of rambling components may suggest a similar supraspinal control of standing in the maximal leaning position between gymnasts and healthy non-athletes. However, decreased trembling in gymnasts may indicate reduced noise in their postural control system possibly due to superior control processes at the spinal level. The anterior stability limit was not influenced by gymnastics training in female adolescents.


2014 ◽  
Vol 27 (3) ◽  
pp. 399-406 ◽  
Author(s):  
Sarina Francescato Torres ◽  
Júlia Guimarães Reis ◽  
Daniela Cristina Carvalho de Abreu

Objective To verify the effects of gender and physical activity on postural sway. Method A cross-sectional study was conducted to analyze upright balance of young men and women between the ages of 20-30, both active and sedentary. Study participants were 60 individuals, who were divided into: active women (n = 15), sedentary women (n = 15), active men (n = 15) and sedentary men (n = 15). The International Physical Activity Questionnaire (IPAQ) short form, was used to evaluate each participant’s level of physical activity. According to the questionnaire, active individuals are those who carry out moderate activity, with an energy expenditure between 3.5 and 6 METs (1 MET: 3.5 ml/kg/min), or vigorous activity, with an energy expenditure above 6 METs, at least three days a week for 20 minutes. To assess control of postural sway, we measured the amplitude and velocity of anteroposterior (AP) and mediolateral (ML) sway in standing position, with their eyes open and closed, with and without foam, on a force platform. Results Comparison between genders revealed that, when compared to sedentary women, sedentary men displayed poorer performance in velocity and amplitude of AP postural control sway with their eyes closed, with and without foam. There were no differences in the amplitude and velocity of ML sway, both with open and closed eyes among groups (p < 0.05). There were no differences when comparing physically active men and women either. Conclusion Sedentary men seem to rely more on vision for maintaining postural control in quiet standing situations with respect to women.


Author(s):  
Elżbieta Piątek ◽  
Michał Kuczyński ◽  
Bożena Ostrowska

Due to balance deficits that accompany adolescent idiopathic scoliosis (AIS), the potential interaction between activities of daily living and active self-correction movements (ASC) on postural control deserves particular attention. Our purpose was to assess the effects of ASC movements with or without a secondary mental task on postural control in twenty-five girls with AIS. It is a quasi-experimental within-subject design with repeated measures ANOVA. They were measured in four 20-s quiet standing trials on a force plate: no task, ASC, Stroop test, and both. Based on the center-of-pressure (COP) recordings, the COP parameters were computed. The ASC alone had no effect on any of the postural sway measures. Stroop test alone decreased COP speed and increased COP entropy. Performing the ASC movements and Stroop test together increased the COP speed and decreased COP entropy as compared to the baseline data. In conclusion, our results indicate that AIS did not interfere with postural control. The effects of the Stroop test accounted for good capacity of subjects with AIS to take advantage of distracting attentional resources from the posture. However, performing both tasks together exhibited some deficits in postural control, which may suggest the need for therapeutic consultation while engaging in more demanding activities.


2011 ◽  
Vol 20 (4) ◽  
pp. 442-456 ◽  
Author(s):  
Zohreh Meshkati ◽  
Mehdi Namazizadeh ◽  
Mahyar Salavati ◽  
Masood Mazaheri

Context:Although reliability is a population-specific property, few studies have investigated the measurement error associated with force-platform parameters in athletic populations.Objective:To investigate the skill-related differences between athletes and nonathletes in reliability of center-of-pressure (COP) summary measures under eyes-open (EO) and eyes-closed (EC) conditions.Design:Test–retest reliability study.Setting:COP was recorded during double-leg quiet standing on a Kistler force platform before and after a fatiguing treadmill exercise, with EO and EC.Participants:31 male participants including 15 athletes practiced in karate and 16 nonathletes.Main Outcome Measures:Standard deviation (SD) of amplitude, phase-plane portrait, SD of velocity, mean total velocity, and area were calculated from 30-s COP data. Intraclass correlation coefficient (ICC), standard error of measurement, and coefficient of variation (CV) were used as estimates of reliability and precision.Results:Higher ICCs were found for COP measures in the athlete (compared with the nonathlete) group, postfatigued (compared with prefatigued) condition, and EC (compared with EO) tests. CVs smaller than 15% were obtained for most of the COP measures. SD of velocity in the anteroposterior direction showed the highest reliability in most conditions.Conclusions:Tests with EC and to a lesser extent tests performed in the athlete group and in the postfatigued condition showed better reliability.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7513 ◽  
Author(s):  
Elżbieta Piątek ◽  
Michał Kuczyński ◽  
Bożena Ostrowska

Background It is known that adolescent idiopathic scoliosis (AIS) is often accompanied by balance deficits. This reciprocal relationship must be taken into account when prescribing new therapeutic modalities because these may differently affect postural control, interacting with therapy and influencing its results. Objective The purpose was to compare postural control in girls with AIS while wearing the Chêneau brace (BRA) or performing active self-correction (ASC) with their postural control in a quiet comfortable stance. Methods Nine subjects were evaluated on a force plate in three series of two 20-s quiet standing trials with eyes open or closed; three blocks were randomly arranged: normal quiet stance (QST), quiet stance with BRA, and quiet stance with ASC. On the basis of centre-of-pressure (COP) recordings, the spatial and temporal COP parameters were computed. Results and Discussion Performing ASC was associated with a significant backward excursion of the COP mean position with eyes open and closed (ES = 0.56 and 0.65, respectively; p < 0.05). This excursion was accompanied by an increase in the COP fractal dimension (ES = 1.05 and 0.98; p < 0.05) and frequency (ES = 0.78; p = 0.10 and ES = 1.14; p < 0.05) in the mediolateral (ML) plane. Finally, both therapeutic modalities decreased COP sample entropy with eyes closed in the anteroposterior (AP) plane. Wearing BRA resulted in ES = 1.45 (p < 0.05) while performing ASC in ES = 0.76 (p = 0.13). Conclusion The observed changes in the fractal dimension (complexity) and frequency caused by ASC account for better adaptability of patients to environmental demands and for their adequate resources of available postural strategies in the ML plane. These changes in sway structure were accompanied by a significant (around 25 mm) backward excursion of the mean COP position. However, this improvement was achieved at the cost of lower automaticity, i.e. higher attentional involvement in postural control in the AP plane. Wearing BRA may have an undesirable effect on some aspects of body balance.


Sign in / Sign up

Export Citation Format

Share Document