using photovoice to foster a student vision for natural spaces on a college campus in the Pacific Northwest United States

2019 ◽  
Vol 30 (3) ◽  
pp. 296-311
Author(s):  
Ryan F. Reese ◽  
Christopher M. Seitz ◽  
Marjorie Gosling ◽  
Hannah Craig
2016 ◽  
Vol 148 (5) ◽  
pp. 616-618 ◽  
Author(s):  
E.R. Echegaray ◽  
R.N. Stougaard ◽  
B. Bohannon

AbstractEuxestonotus error (Fitch) (Hymenoptera: Platygastridae) is considered part of the natural enemy complex of the wheat midge Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Although previously reported in the United States of America, there is no record for this species outside the state of New York since 1865. A survey conducted in the summer of 2015 revealed that E. error is present in northwestern Montana and is likely playing a role in the suppression of wheat midge populations.


2018 ◽  
Vol 19 (3) ◽  
pp. 258-264
Author(s):  
David H. Gent ◽  
Briana J. Claassen ◽  
Megan C. Twomey ◽  
Sierra N. Wolfenbarger

Powdery mildew (caused by Podosphaera macularis) is one of the most important diseases of hop in the western United States. Strains of the fungus virulent on cultivars possessing the resistance factor termed R6 and the cultivar Cascade have become widespread in the Pacific Northwestern United States, the primary hop producing region in the country, rendering most cultivars grown susceptible to the disease at some level. In an effort to identify potential sources of resistance in extant germplasm, 136 male accessions of hop contained in the U.S. Department of Agriculture collection were screened under controlled conditions. Iterative inoculations with three isolates of P. macularis with varying race identified 23 (16.9%) accessions with apparent resistance to all known races of the pathogen present in the Pacific Northwest. Of the 23 accessions, 12 were resistant when inoculated with three additional isolates obtained from Europe that possess novel virulences. The nature of resistance in these individuals is unclear but does not appear to be based on known R genes. Identification of possible novel sources of resistance to powdery mildew will be useful to hop breeding programs in the western United States and elsewhere.


2021 ◽  
pp. 119-143
Author(s):  
Melanie C. Ross

Chapter 5 explores the Vineyard movement, one of the fastest-growing church movements in the United States, which is committed to holding together the “already” and “not yet” of the Kingdom of God in worship. In addition to looking for a dramatic, miraculous inbreaking of the Holy Spirit, there is a less dramatic but equally formative influence at work in worship: the Quaker notion of “gospel order” and its accompanying understanding of ethics. These commitments are tested at “Koinonia Vineyard,” a congregation located in the Pacific Northwest, where one African American member wrestles with her vision of activism and her Caucasian pastor’s desire for the congregation to remain politically neutral during a time of national racial unrest.


Weed Science ◽  
1986 ◽  
Vol 34 (S1) ◽  
pp. 2-6 ◽  
Author(s):  
Gary A. Lee

Rush skeletonweed (Chondrilla junceaL. CHOJU) infestations occur along the eastern seaboard and in several western states of the United States. This Eurasian species was inadvertently introduced prior to 1870, with established stands first reported in Maryland and West Virginia (16). These infestations (16) were assessed as lacking aggressive characteristics and posed little threat as a problem weed. Although rush skeletonweed was discovered in the Pacific Northwest as early as 1938, the species was not recognized as a potential weed problem until nearly three decades later (27). Subsequent surveys revealed that infestations occupied over 2.3 million ha in California, Idaho, Oregon, and Washington (6). Attempts to generate support for an organized control program in Idaho were met with little enthusiasm during the 1960's.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Jaime Martinez-Urtaza ◽  
Ronny van Aerle ◽  
Michel Abanto ◽  
Julie Haendiges ◽  
Robert A. Myers ◽  
...  

ABSTRACT Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3) was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW) lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming. IMPORTANCE Vibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe. IMPORTANCE Vibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe.


Plant Disease ◽  
2005 ◽  
Vol 89 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Lindsey J. du Toit ◽  
Mike L. Derie ◽  
Pablo Hernandez-Perez

There are no previous reports of Verticillium wilt in fresh and processing spinach (Spinacia oleracea) crops in the United States. In 2002, a hybrid spinach seed crop in the Pacific Northwest developed late-season wilt symptoms. Assays of the harvested seed and stock seed of the male and female parents revealed 59.5, 44.0, and 1.5%, respectively, were infected with Verticillium dahliae. Assays of 13 stock or commercial seed lots grown in 2002 and 62 commercial lots harvested in 2003 in Denmark, Holland, New Zealand, and the United States revealed the prevalence of Verticillium spp. in commercial spinach seed. Sixty-eight lots (89%) were infected with Verticillium spp. at incidences ranging from 0.3 to 84.8%. Five spinach seed isolates of V. dahliae were pathogenic on each of three spinach cultivars by root-dip inoculation. V. dahliae was detected on 26.4% of the seed from 7 of 11 inoculated plants but on none of the seed from 6 control plants, demonstrating systemic movement of V. dahliae. Seed-to-seed transmission was also demonstrated by planting naturally infected seed lots. This is the first report of Verticillium wilt of spinach in the primary region of spinach seed production in the United States.


2018 ◽  
Vol 58 (2) ◽  
pp. 261-294
Author(s):  
Krystyn R. Moon

This essay explores the experiences and debates surrounding preparatory schools for Chinese students in the United States at the turn of the twentieth century. These institutions attempted to expand educational opportunities for poorer Chinese students who might otherwise not have had a chance to go to school; however, most of these children also had families in the United States, who supported their children's education but also needed their help to sustain their families. American laws banned most forms of Chinese immigration, and families had to carefully maneuver through federal policies to enter the country as students, often turning to European Americans-who were invested in expanding U.S. involvement in China-for support. Because of anti-Chinese sentiments, consular and immigration authorities questioned these programs, making them difficult to sustain. Ultimately, the interactions between immigration and consular officials, education boosters, and Chinese students were integral to the development of preparatory schools for other international students in the twentieth century.


2019 ◽  
Vol 20 (7) ◽  
pp. 1261-1274
Author(s):  
Christopher P. Konrad

Abstract Streamflow was exceptionally low in the spring and summer of 2015 across much of the western United States because of a regional drought that exploited the sensitivity of both snow- and rain-dominant rivers. Streamflow during 2015 was examined at 324 gauges in the region to assess its response to the amount, form, and seasonal timing of precipitation and the viability of using spatially aggregated, normative models to assess streamflow vulnerability to drought. Seasonal rain and spring snowmelt had the strongest effects on runoff during the same season, but their effects persisted into subsequent seasons as well. Below-normal runoff in the spring of 2015 was pervasive across the region, while distinct seasonal responses were evident in different hydroclimatic settings: January–March (winter) runoff was above normal in most snow-dominant rivers and runoff in all seasons was above normal for much of the desert Southwest. Summer precipitation contributed to summer runoff in both the Pacific Northwest and desert Southwest. A first-order model that presumes runoff is a constant fraction of precipitation (the precipitation elasticity of runoff, E = 1) could be used for assessing and forecasting runoff responses to precipitation deficits across the region, but runoff generally is more vulnerable to drought (E > 1) than predicted by a first-order model. Uncertainty in spring and summer precipitation forecasts remain critical issues for forecasting and predicting summer streamflow vulnerability to drought across much of the western United States.


Sign in / Sign up

Export Citation Format

Share Document