Biological control of Botrytis cinerea, the causal agent of rose gray mold disease by antagonistic fungi

Author(s):  
Mohammad Reza Safari Motlagh ◽  
Nastaran Jafari
FLORESTA ◽  
2013 ◽  
Vol 43 (2) ◽  
pp. 225
Author(s):  
Miriam Machado Cunico ◽  
Celso Garcia Auer ◽  
Marlon Wesley Machado Cunico ◽  
Obdulio Gomes Miguel ◽  
Patricio Peralta Zamora ◽  
...  

 Extratos etanólicos de anestesia, Ottonia martiana Miq., foram reavaliados quanto à inibição do crescimento micelial dos fungos Cylindrocladium spathulatum (pinta-preta da erva-mate) e Botrytis cinerea (mofo-cinzento do eucalipto), por meio do planejamento fatorial. A ocorrência de decomposição de bioativos no processo de autoclavagem também foi investigada, por meio de teste de eficiência de extratos filtrados (filtro Millipore) e esterilizados (autoclave) no controle dos fitopatógenos, nas concentrações de 1, 10, 100 e 1000 ppm. Os extratos etanólicos filtrado e esterilizado inibiram o crescimento micelial dos fungos e foram mais ativos frente a B. cinerea.O extrato filtrado exibiu maior potencial antifúngico que o extrato esterilizado. O processo de esterilização por autoclavagem causou pequena decomposição dos bioativos presentes no extrato de anestesia.Palavras-chave: Anestesia; mofo-cinzento; pinta-preta. Abstract Fungitoxic potential of ethanolic extracts of anestesia in the control of phytopathogenic diseases. The antifungal potential of anestesia, Ottonia martiana Miq. was reassessed by factorial design, in vitro testing of fungal mycelial growth compared to the pathogenic isolates Cylindrocladium spathulatum, causal agent of black spot onyerba mate, and Botrytis cinerea causal agent of gray-mold on eucalypts. Occurrence of decomposition of bioactive of the autoclaving process was investigated using foliar detached test compared to the pathogens (1000 ppm). Ethanolic extracts - EBEtOH (filtered and autoclaved) inhibited the mycelial growth of C. spathulatum and B. cinerea (1000 ppm) and were more pronounced against B. cinerea (43.6 % and 68.9 %). EBEtOH filtered (0.22 µm) presented higher activity than EBEtOH autoclaved (C. spathulatum: 52.8 % and 43.6 %, B. cinerea: 68.9 % and 43.6 %), suggesting little decomposition ofbioactive after autoclaving. EBEtOH filtrate presented potential inhibition of 28 % in eucalypt leaves against B. cinerea.  Keywords: Ottonia martiana; black spot; gray-mold.


FLORESTA ◽  
2013 ◽  
Vol 43 (1) ◽  
pp. 145 ◽  
Author(s):  
José Antonio Sbravatti Junior ◽  
Celso Garcia Auer ◽  
Ida Chapaval Pimentel ◽  
Álvaro Figueredo dos Santos ◽  
Bruno Schultz

   O Eucalyptus benthamii é uma das principais espécies de eucalipto plantadas na região Sul do Brasil, por sua resistência a geadas e por seu uso na produção florestal de madeira para fins energéticos. Na produção de mudas, uma das principais doenças ocorrentes em viveiros é o mofo-cinzento, causado pelo fungo Botrytis cinerea. Uma das alternativas para o controle dessa doença é o controle biológico com fungos endofíticos, os quais podem competir com os patógenos foliares de mudas de eucalipto. O objetivo deste trabalho foi isolar os fungos endofíticos provenientes de mudas de E. benthamii, identificá-los e selecioná-los para o controle de B. cinerea. Eles foram isolados do interior de tecidos vegetais desinfectados, identificados de acordo com critérios macro e micromorfológicos e classificados a partir de testes de controle biológico in vitro. Os resultados evidenciaram o potencial antagonista dos fungos Aspergillus sp., Penicillium sp. e Trichoderma sp. Nenhum desses fungos causou lesões em mudas de E. benthamii.Palavras-chave: Mofo-cinzento; eucalipto; viveiro.AbstractIn vitro selection of endophytes for biological control of Botrytis cinerea in Eucalyptus benthamii. Eucalyptus benthamii is one of the main eucalypt species planted in Southern Brazil, due to its resistance to frost and its use in the production of forest wood for energy purposes. During the production of seedlings, the main disease occurring in forest nurseries is gray-mold caused by the fungus Botrytis cinerea. One alternative for control this disease is biological control with fungal endophytes, which can compete with the foliar pathogens of eucalypt seedlings. The objective of this study was to isolate endophytic fungi from seedlings of Eucalyptus benthamii, identify and select them for B. cinerea control. These were isolated from the interior of disinfected plant tissues, identified according to macro and micromorphological criteria, and based on tests of biological control in vitro. The results revealed the potential antagonist of Aspergillus sp., Penicillium sp. and Trichoderma sp. No fungi caused lesions in E. benthamii seedlings.Keywords: Gray-mold; eucalypt; nursery.    


Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1779-1779
Author(s):  
D. Fernández-Ortuño ◽  
J. A. Torés ◽  
A. Pérez-García ◽  
A. de Vicente

BioControl ◽  
2017 ◽  
Vol 62 (6) ◽  
pp. 793-803 ◽  
Author(s):  
Sawai Boukaew ◽  
Poonsuk Prasertsan ◽  
Claire Troulet ◽  
Marc Bardin

2004 ◽  
Vol 94 (12) ◽  
pp. 1280-1285 ◽  
Author(s):  
Eleni K. Kulakiotu ◽  
Constantine C. Thanassoulopoulos ◽  
Evangelos M. Sfakiotakis

The potential of volatile substances emitted by ‘Isabella’ grapes (Vitis labrusca) to control gray mold (Botrytis cinerea) on ‘Hayward’ kiwifruit (Actinidia deliciosa) was studied. The closed Mariotte system was used as a bioassay method to analyze quantitatively the biological action of these volatiles on B. cinerea growth. In vivo experiments compared the effects of volatiles from ‘Isabella’ grapes versus volatiles from ‘Roditis’ grapes (V. vinifera) and a B. cinerea control on the growth and disease development of B. cinerea on kiwifruit. The effect of the volatiles on the growth of B. cinerea was tested at various temperatures and times of inoculation after the wounding of kiwifruit, as well as using various weights and developmental stages of the grapes. The ‘Isabella’ volatiles limited the incidence of infection by reducing both the inoculum density and the activity of the pathogen. The weight and developmental stage of the grapes were important in the degree of inhibitory action of the ‘Isabella’ volatiles. The inhibitory action was more pronounced at 21°C irrespective of the inoculation time after wounding. The study shows the potential for successful biological control of B. cinerea on kiwifruit by volatiles from ‘Isabella’ grapes.


1997 ◽  
Vol 23 (7) ◽  
pp. 1689-1702 ◽  
Author(s):  
Marielle Adrian ◽  
Philippe Jeandet ◽  
Jérôme Veneau ◽  
Leslie A. Weston ◽  
Roger Bessis

2002 ◽  
Vol 8 (3) ◽  
pp. 184-188 ◽  
Author(s):  
Byung-Ju Moon ◽  
Choul-Soung Kim ◽  
Ju-Hee Song ◽  
Ju-Hee Kim ◽  
Jae-Pil Lee ◽  
...  

Author(s):  
R. G. A. S. Rajapakse ◽  
M. P. T. Premarathna ◽  
Shyamalee Kohombange ◽  
D. G. N. S. B. Jayasinghe ◽  
H. A. S. Rohana ◽  
...  

Gray mold caused by Botrytis is the major problem in iceberg lettuce cultivation in poly tunnels in Sri Lanka. Currently management of this disease of lettuce depends mainly on foliar application of fungicides. Continues application of fungicides for control of gray mold could not be recommended as lettuce mainly consume as fresh vegetables. Therefore, studies were conducted to identify the causal agent, varietal resistance to pathogen and effective chitosan formulation and biological control agents on control of gray mold diseases of ice berg lettuce in poly tunnels. Causal agent of this disease was identified as Botrytis cinerea. Commercially grown varieties Eden and Maruli were equally susceptible to the disease. Different isolates of pathogen were shown different virulence levels on iceberg lettuce variety Eden. In vitro test showed that, almost complete inhibition of mycelia growth of all Botrytis isolates at 600 ppm chitopower 2 and liquid formulation of Trichoderma asperellum (4x105 conidia/ml) but 600 ppm chitopower 1 or liquid formulation of fluorescent Pseudomonas (106 bacteria/ml) or fungicide-Dicloran 75WP (3000ppm) were suppressed some isolates only. Studies in poly tunnel showed that lowest disease severity index (3.6% DSI) of gray mold in iceberg lettuce plants treated with Trichoderma asperellum and highest DSI (77.7%) in control treatment. Dicloran 75WP, chitopower 2 and fluorescent Pseudomonas were recorded 16.6%, 18.5% and 46.2% DSI respectively. Results revealed that Trichoderma asperellum bio control agent and chitopower 2 could be used as alternatives to synthetic fungicides in controlling of gray mold disease of iceberg lettuce grown in poly tunnels.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 692-692 ◽  
Author(s):  
D. Fernández-Ortuño ◽  
A. Grabke ◽  
P. K. Bryson ◽  
R. J. Rouse ◽  
P. Rollins ◽  
...  

Botrytis cinerea Pers. is the causal agent of gray mold and one of the most economically important plant-pathogenic fungi affecting strawberry (Fragaria × ananassa). Control of gray mold mainly depends on the use of site-specific fungicides, including the phenylpyrrole fludioxonil. This fungicide is currently registered in combination with cyprodinil in form of Switch 62.5WG (Syngenta Crop Protection, Greensboro, NC) for gray mold control of small fruits in the United States. In June 2013, strawberries affected with symptoms resembling gray mold were observed despite the application of Switch in one field located in Federalsburg, MD, and one located near Chesnee, SC. Ten single-spore isolates, each from a different fruit, were obtained from each location and confirmed to be B. cinerea using cultural and molecular tools as described previously (3). In vitro sensitivity to fludioxonil (Scholar SC, 20.4% [v/v] active ingredient, Syngenta Crop Protection, Greensboro, NC) was determined using a conidial germination assay as previously described (4). Eight of the 20 isolates (six from Maryland and two from South Carolina) were moderately resistant to fludioxonil, i.e., they grew on medium amended with 0.1 μg/ml fludixonil and showed residual growth at 10 μg/ml (4). The in vitro assay was repeated obtaining the same results. To assess in vivo sensitivity on fungicide-treated fruit, commercially grown strawberries were rinsed with water, dried, and sprayed 4 h prior to inoculation with either water or 2.5 ml/liter of Scholar SC to runoff using a hand mister. Fruit was stab-wounded with a sterile syringe and inoculated with a 30-μl droplet of conidia suspension (106 spores/ml) of either two sensitive or four resistant isolates (two isolates from Maryland and two isolates from South Carolina). Each isolate/treatment combination consisted of 24 mature but still firm strawberry fruit with three 8-fruit replicates. The fruit were kept at 22°C and lesion diameters were measured after 4 days of inoculation. The sensitive isolates developed gray mold symptoms on nontreated (2.5 cm lesion diameter) but not on Scholar SC-treated fruit. The resistant isolates developed gray mold on both, the water-treated control (2.3 cm lesion diameter), and the fungicide-treated fruit (1.8 cm lesion diameter). The experiment was performed twice. To our knowledge this is the first report of fludioxonil resistance in B. cinerea from strawberry fields in Maryland and South Carolina. Resistance to fludioxonil is still rare in the United States and has only been reported in B. cinerea isolates from a Virginia strawberry field (1). The increase in occurrence of resistance to fludioxonil may be a result of increased use of Switch following reports of resistance to other chemical classes in this pathogen in southern strawberry fields (2). References: (1) D. Fernández-Ortuño et al. Plant Dis. 97:848, 2013. (2) D. Fernández-Ortuño et al. Plant Dis. 96:1198, 2012. (3) D. Fernández-Ortuño et al. Plant Dis. 95:1482, 2011. (4) R. W. S. Weber and M. Hahn. J. Plant Dis. Prot. 118:17, 2011.


Sign in / Sign up

Export Citation Format

Share Document