Rapid identification of bacteria from bioMerieux BacT/ALERT blood culture bottles by MALDI-TOF MS

2013 ◽  
Vol 70 (4) ◽  
pp. 149-155 ◽  
Author(s):  
J.D. Haigh ◽  
I.M. Green ◽  
D. Ball ◽  
M. Eydmann ◽  
M. Millar ◽  
...  
2015 ◽  
Vol 64 (11) ◽  
pp. 1346-1352 ◽  
Author(s):  
Osman Altun ◽  
Silvia Botero-Kleiven ◽  
Sarah Carlsson ◽  
Måns Ullberg ◽  
Volkan Özenci

2016 ◽  
Vol 74 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Antonio Curtoni ◽  
Raffaella Cipriani ◽  
Elisa Simona Marra ◽  
Anna Maria Barbui ◽  
Rossana Cavallo ◽  
...  

2013 ◽  
Vol 2 (3) ◽  
pp. 104 ◽  
Author(s):  
Yuko Furukawa ◽  
Mitsuru Katase ◽  
Kazunobu Tsumura

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently been demonstrated as a rapid and reliable method for identifying bacteria in colonies grown on culture plates. Rapid identification of food spoilage bacteria is important for ensuring the quality and safety of food. To shorten the time of analysis, several researchers have proposed the direct MALDI-TOF MS tequnics for identification of bacteria in clinical samples such as urine and positive blood cultures. In this study, processed soybean products (total 26 test samples) were initially conducted a culture enrichiment step and bacterial cells were separated from interfering components. Harvested bacterial cells were determined by MALDI-TOF MS and 16S rRNA gene sequencing method. Six processed soybean products (23%) were increased bacterial cells after culture enrichiment step and they were sucessfully obtained the accurate identification results by MALDI-TOF MS-based method without colony formation.


Author(s):  
Hazan Zengin Canalp ◽  
Banu Bayraktar

Using MALDI-TOF MS directly from blood culture bottles reduces the time required for pathogen identification, and the turnaround times for final identification have been compared with overnight incubation from solid media in previous studies. However, identification from a short incubation of agar plates has been increasingly accepted and successfully implemented in routine laboratories, but there is no data comparing direct MALDI-TOF MS with the short-term, incubated agar plates.


2018 ◽  
Vol 67 (9) ◽  
pp. 1253-1256 ◽  
Author(s):  
Michael Payne ◽  
Sylvie Champagne ◽  
Christopher Lowe ◽  
Victor Leung ◽  
Michelle Hinch ◽  
...  

2013 ◽  
Vol 24 (4) ◽  
pp. 191-194 ◽  
Author(s):  
Manal Tadros ◽  
Astrid Petrich

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) can be used to identify bacteria directly from positive blood and sterile fluid cultures. The authors evaluated a commercially available kit – the Sepsityper Kit (Bruker Daltonik, Germany) – and MALDI-TOF MS for the rapid identification of organisms from 80 flagged positive blood culture broths, of which 73 (91.2%) were blood culture specimens and seven (8.7%) were cerebrospinal fluid specimens, in comparison with conventional identification methods. Correct identification to the genus and species levels was obtained in 75 of 80 (93.8%) and 39 of 50 (78%) blood culture broths, respectively. Applying the blood culture analysis module, a newly developed software tool, improved the species identification of Gram-negative organisms from 94.7% to 100% and of Gram-positive organisms from 66.7% to 70%.MALDI-TOF MS is a promising tool for the direct identification of organisms cultured from sterile sites.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Walter Florio ◽  
Susanna Cappellini ◽  
Cesira Giordano ◽  
Alessandra Vecchione ◽  
Emilia Ghelardi ◽  
...  

Abstract Background The application of matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) to microbial identification has allowed the development of rapid methods for identification of microorganisms directly in positive, blood cultures (BCs). These methods can yield accurate results for monomicrobial BCs, but often fail to identify multiple microorganisms in polymicrobial BCs. The present study was aimed at establishing a rapid and simple method for identification of bacteria and yeast in polymicrobial BCs from patients with bloodstream infection. Results The rapid method herein proposed is based on short-term culture in liquid media allowing selective growth of microorganisms recovered from polymicrobial BCs, followed by rapid identification by MALDI-TOF MS. To evaluate the accuracy of this method, 56 polymicrobial BCs were comparatively analyzed with the rapid and routine methods. The results showed concordant identification for both microbial species in 43/50 (86%) BCs containing two different microorganisms, and for two microbial species in six BCs containing more than two different species. Overall, 102/119 (85.7%) microorganisms were concordantly identified by the rapid and routine methods using a cut-off value of 1.700 for valid identification. The mean time to identification after BC positivity was about 4.2 h for streptococci/enterococci, 8.7 h for staphylococci, 11.1 h for Gram-negative bacteria, and 14.4 h for yeast, allowing a significant time saving compared to the routine method. Conclusions The proposed method allowed rapid and reliable microbial identification in polymicrobial BCs, and could provide clinicians with timely, useful information to streamline empirical antimicrobial therapy in critically ill patients.


Sign in / Sign up

Export Citation Format

Share Document