scholarly journals Evaluation of MALDI-TOF Mass Spectrometry and Sepsityper Kit™ for the Direct Identification of Organisms from Sterile Body Fluids in a Canadian Pediatric Hospital

2013 ◽  
Vol 24 (4) ◽  
pp. 191-194 ◽  
Author(s):  
Manal Tadros ◽  
Astrid Petrich

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) can be used to identify bacteria directly from positive blood and sterile fluid cultures. The authors evaluated a commercially available kit – the Sepsityper Kit (Bruker Daltonik, Germany) – and MALDI-TOF MS for the rapid identification of organisms from 80 flagged positive blood culture broths, of which 73 (91.2%) were blood culture specimens and seven (8.7%) were cerebrospinal fluid specimens, in comparison with conventional identification methods. Correct identification to the genus and species levels was obtained in 75 of 80 (93.8%) and 39 of 50 (78%) blood culture broths, respectively. Applying the blood culture analysis module, a newly developed software tool, improved the species identification of Gram-negative organisms from 94.7% to 100% and of Gram-positive organisms from 66.7% to 70%.MALDI-TOF MS is a promising tool for the direct identification of organisms cultured from sterile sites.


Parasite ◽  
2020 ◽  
Vol 27 ◽  
pp. 28 ◽  
Author(s):  
Basma Ouarti ◽  
Maureen Laroche ◽  
Souad Righi ◽  
Mohamed Nadir Meguini ◽  
Ahmed Benakhla ◽  
...  

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now routinely used for the rapid identification of microorganisms isolated from clinical samples and has been recently successfully applied to the identification of arthropods. In the present study, this proteomics tool was used to identify lice collected from livestock and poultry in Algeria. The MALDI-TOF MS spectra of 408 adult specimens were measured for 14 species, including Bovicola bovis, B. ovis, B. caprae, Haematopinus eurysternus, Linognathus africanus, L. vituli, Solenopotes capillatus, Menacanthus stramineus, Menopon gallinae, Chelopistes meleagridis, Goniocotes gallinae, Goniodes gigas, Lipeurus caponis and laboratory reared Pediculus humanus corporis. Good quality spectra were obtained for 305 samples. Spectral analysis revealed intra-species reproducibility and inter-species specificity that were consistent with the morphological classification. A blind test of 248 specimens was performed against the in-lab database upgraded with new spectra and validated using molecular tools. With identification percentages ranging from 76% to 100% alongside high identification scores (mean = 2.115), this study proposes MALDI-TOF MS as an effective tool for discriminating lice species.



PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243790
Author(s):  
Christine Noll ◽  
Azadda Nasruddin-Yekta ◽  
Pia Sternisek ◽  
Michael Weig ◽  
Uwe Groß ◽  
...  

Pathogen identification is a critical step during diagnosis of infectious diseases. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight mass spectrometry (MALDI-TOF-MS) has become the gold standard for identification of microorganisms cultured on solid media in microbiology laboratories. Direct identification of microbes from liquid specimen, circumventing the need for the additional overnight cultivation step, has been successfully established for blood culture, urine and liquor. Here, we evaluate the ability of MALDI-TOF MS for direct identification of pathogens in synovial fluid after liquid enrichment in BacT/Alert blood culture bottles. Influence of synovial specimen quality on direct species identification with the MALDI BioTyper/Sepsityper was tested with samples inoculated from pretested native synovia with concomitant inoculation of blood or pus, or highly viscous fluid. Here, we achieved >90% concordance with culture on solid medium, and only mixed-species samples posed significant problems. Performance in routine diagnostics was tested prospectively on bottles inoculated by treating physicians on ward. There, we achieved >70% concordance with culture on solid media. The major contributors to test failure were the absence of a measurable mass signal and mixed-specimen samples. The Sepsityper workflow worked well on samples derived from BacT/Alert blood culture bottles inoculated with synovial fluid, giving concordant results to identification from solid media. Host remnant material in the inoculum, such as blood or pus, had no detrimental effect on identification score values of the BioTyper system after processing with the Sepsityper workflow, and neither had the initial viscosity of the synovial sample.



2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Mohammed AlMogbel ◽  
Mohammed AlBolbol ◽  
Noura Elkhizzi ◽  
Hisham AlAjlan ◽  
John Philip Hays ◽  
...  

Abstract Nocardia cyriacigeorgica (N. cyriacigeorgica) is most frequently associated with human infections, including chronic bronchitis, pulmonary disease and brain abscesses. In general, N. cyriacigeorgica causes infections in immunocompromised individuals and has been reported in clinical samples worldwide. However, the isolation and speciation of N. cyriacigeorgica in the routine diagnostic microbiology laboratory are complicated and time consuming. Recent mass spectrometry techniques such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) have been successfully integrated into many routine diagnostic microbiology laboratories, allowing for the rapid, accurate and simple identification and speciation of many different microorganisms, including difficult-to-identify bacterial species. Here, we present a case report of a 65-year-old female patient from the neurology ward of Prince Sultan Military Medical City in Riyadh, Saudi Arabia, who was infected with N. cyriacigeorgica. The bacterium was successfully identified by MALDI-TOF-MS, with species identification subsequently confirmed by sequence analysis of the 16S ribosomal RNA.



Author(s):  
Fatou Kiné Fall ◽  
Maureen Laroche ◽  
Hervé Bossin ◽  
Didier Musso ◽  
Philippe Parola

Mosquitoes are the main arthropod vectors of infectious diseases in humans. The current methods for mosquito identification include morphological and molecular methods. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), now routinely used for bacterial identification, has recently emerged in the field of entomology. The aim of this study was to use MALDI-TOF MS to identify mosquito colonies from French Polynesia. Five hundred specimens from French Polynesia belonging to three species, Aedes aegypti, Aedes polynesiensis, and Culex quinquefasciatus, were included in the study. Testing the legs of these mosquitoes by MALDI-TOF MS revealed a 100% correct identification of all specimens at the species level. The MALDI-TOF MS profiles obtained allowed differentiation of male from female mosquitoes and the specific identification of female mosquito colonies of the same species but different geographic origin.



Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 266-273
Author(s):  
Min Tang ◽  
Jia Yang ◽  
Ying Li ◽  
Luhua Zhang ◽  
Ying Peng ◽  
...  

AbstractMatrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has become one of the most popular methods for the rapid and cost-effective detection of clinical pathogenic microorganisms. This study aimed to evaluate and compare the diagnostic performance of MALDI-TOF MS with that of conventional approaches for the direct identification of pathogens from urine samples. A systematic review was conducted based on a literature search of relevant databases. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and area under the summary receiver operating characteristic (SROC) curve of the combined studies were estimated. Nine studies with a total of 3920 subjects were considered eligible and included in the meta-analysis. The pooled sensitivity was 0.85 (95% CI 0.79-0.90), and the pooled specificity was 0.93 (95% CI 0.82-0.97). The PLR and NLR were 11.51 (95% CI 4.53-29.26) and 0.16 (95% CI 0.11-0.24), respectively. The area under the SROC curve was 0.93 (95% CI 0.91-0.95). Sensitivity analysis showed that the results of this meta-analysis were stable. MALDI-TOF MS could directly identify microorganisms from urine samples with high sensitivity and specificity.



2021 ◽  
Vol 12 ◽  
Author(s):  
Keyi Yu ◽  
Zhenzhou Huang ◽  
Ying Li ◽  
Qingbo Fu ◽  
Lirong Lin ◽  
...  

Shewanella species are widely distributed in the aquatic environment and aquatic organisms. They are opportunistic human pathogens with increasing clinical infections reported in recent years. However, there is a lack of a rapid and accurate method to identify Shewanella species. We evaluated here matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid identification of Shewanella. A peptide mass reference spectra (PMRS) database was constructed for the type strains of 36 Shewanella species. The main spectrum projection (MSP) cluster dendrogram showed that the type strains of Shewanella species can be effectively distinguished according to the different MS fingerprinting. The PMRS database was validated using 125 Shewanella test strains isolated from various sources and periods; 92.8% (n = 116) of the strains were correctly identified at the species level, compared with the results of multilocus sequence analysis (MLSA), which was previously shown to be a method for identifying Shewanella at the species level. The misidentified strains (n = 9) by MALDI-TOF MS involved five species of two groups, i.e., Shewanella algae–Shewanella chilikensis–Shewanella indica and Shewanella seohaensis–Shewanella xiamenensis. We then identified and defined species-specific biomarker peaks of the 36 species using the type strains and validated these selected biomarkers using 125 test strains. Our study demonstrated that MALDI-TOF MS was a reliable and powerful tool for the rapid identification of Shewanella strains at the species level.



2016 ◽  
Vol 74 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Antonio Curtoni ◽  
Raffaella Cipriani ◽  
Elisa Simona Marra ◽  
Anna Maria Barbui ◽  
Rossana Cavallo ◽  
...  


2021 ◽  
Author(s):  
kwenrich not provided

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can accurately identify bloodstream pathogens directly from positive blood culture bottles without the need to wait for agar plate growth. In this study, 2% sodium dodecyl sulfate (SDS) detergent was assessed to determine its benefit in the removal of interfering cellular components for testing on the Bruker Microflex LT MALDI-TOF MS instrument with the Biotyper® CA system. Additionally, the use of a heat-drying step was evaluated for performance improvement over conventional air-drying of samples on the MALDI steel target plate. The modified method with 2% SDS outperformed the in-house protocol in overall success with percentage scores of 91% and 55% ( respectively). The data results support the potential of applying a simple lysing step to an existing in-house extraction method and the use of modified drying methods. The modified techniques evaluated in this study proved beneficial for identifying most blood culture pathogens encountered in the clinical laboratory, and they can allow for reduced turnaround times and more appropriate antibiotic treatments.



2014 ◽  
Vol 8 (09) ◽  
pp. 1081-1088 ◽  
Author(s):  
Elena De Carolis ◽  
Antonietta Vella ◽  
Luisa Vaccaro ◽  
Riccardo Torelli ◽  
Teresa Spanu ◽  
...  

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful technique for identification of microorganisms, changing the workflow of well-established laboratories so that its impact on microbiological diagnostics has been unparalleled. In comparison with conventional identification methods that rely on biochemical tests and require long incubation procedures, MALDI-TOF MS has the advantage of identifying bacteria and fungi directly from colonies grown on culture plates in a few minutes and with simple procedures. Numerous studies on different systems available demonstrate the reliability and accuracy of the method, and new frontiers have been explored besides microbial species level identification, such as direct identification of pathogens from positive blood cultures, subtyping, and drug susceptibility detection.



2019 ◽  
Vol 7 (12) ◽  
pp. 593 ◽  
Author(s):  
Maureen Feucherolles ◽  
Henry-Michel Cauchie ◽  
Christian Penny

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is today the reference method for direct identification of microorganisms in diagnostic laboratories, as it is notably time- and cost-efficient. In the context of increasing cases of enteric diseases with emerging multi-drug resistance patterns, there is an urgent need to adopt an efficient workflow to characterize antimicrobial resistance (AMR). Current approaches, such as antibiograms, are time-consuming and directly impact the “patient-physician” workflow. Through this mini-review, we summarize how the detection of specific patterns by MALDI-TOF MS, as well as bioinformatics, become more and more essential in research, and how these approaches will help diagnostics in the future. Along the same lines, the idea to export more precise biomarker identification steps by MALDI-TOF(/TOF) MS data towards AMR identification pipelines is discussed. The study also critically points out that there is currently still a lack of research data and knowledge on different foodborne pathogens as well as several antibiotics families such as macrolides and quinolones, and many questions are still remaining. Finally, the innovative combination of whole-genome sequencing and MALDI-TOF MS could be soon the future for diagnosis of antimicrobial resistance in foodborne pathogens.



Sign in / Sign up

Export Citation Format

Share Document