Irradiated polyethylene terephthalate and fly ash based grouts for semi-flexible pavement: design and optimisation using response surface methodology

Author(s):  
Muhammad Imran Khan ◽  
Muslich Hartadi Sutanto ◽  
Madzlan Bin Napiah ◽  
Salah E. Zoorob ◽  
Nur Izzi Md Yusoff ◽  
...  
Author(s):  
Divya Bisht ◽  
Surbhi Sinha ◽  
Sonal Nigam ◽  
Kavya Bisaria ◽  
Tithi Mehrotra ◽  
...  

Abstract In the present study, adsorption of colour and other pollutants from agro-based paper mill effluent onto fabricated coal fly ash nanoparticles (CFA-N) have been investigated. Response surface methodology was applied to evaluate the operational conditions for maximum ouster of colour from effluent by nano structured CFA-N. Maximum reduction in colour (92.45%) and other pollutants were obtained at optimum conditions: 60 min interaction time, 60 g/l adsorbent dosage and 80 rpm agitation rate. The regression coefficient values (adjusted R2= 0.7169; predicted R2= 0.7539) established harmony between predicted and the experimental data. The adsorption equilibrium results matched perfectly with both Langmuir and Freundlich isotherms with maximum adsorption capacity of 250 Pt-Co/g. Additionally, the efficacy of CFA-N was also assessed in a continuous column mode. Further, the feasibility of treated effluent for irrigation purpose was checked by growing the plant of Solanum lycopersicum. Overall, the findings demonstrated the outstanding role of inexpensive and abundantly available CFA-N in treatment of paper mill effluent to the required compliance levels.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 403 ◽  
Author(s):  
Alaa Mohammed Razzaq ◽  
Dayang Laila Majid ◽  
Mohamad Ridzwan Ishak ◽  
Uday Muwafaq Basheer

Lightweight, high-strength metal matrix composites have attracted considerable interest because of their attractive physical, mechanical and tribological properties. Moreover, they may offer distinct advantages due to good strength and wear resistance. In this research, AA6063 was reinforced with FA particles using compocasting methods. The effects of fly ash content, load, sliding speed and performance tribology of AA6063 –FA composite were evaluated. Dry sliding wear tests were carried out according to experimental design using the pin-on-disc method with three different loads (24.5, 49 and 73.5 N) and three speeds (150, 200 and 250 rpm) at room temperature. Response surface methodology (RSM) was used to analyze the influence of the process parameters on the tribological behavior of the composites. The surface plot showed that the wear rate increased with increasing load, time and sliding velocity. In contrast, the friction coefficient decreased with increasing these parameters. Optimal models for wear rate and friction coefficient showed appropriate results that can be estimated, hence reducing wear testing time and cost.


Sign in / Sign up

Export Citation Format

Share Document