Field experiments and numerical analysis of curling behavior of cast-in-situ short paneled concrete pavement on lean concrete base

Author(s):  
Sridhar Reddy Kasu ◽  
Sandesh Patel ◽  
Amaranatha Reddy Muppireddy
2012 ◽  
Vol 78 (8) ◽  
pp. 2966-2972 ◽  
Author(s):  
Yuting Liang ◽  
Joy D. Van Nostrand ◽  
Lucie A. N′Guessan ◽  
Aaron D. Peacock ◽  
Ye Deng ◽  
...  

ABSTRACTTo better understand the microbial functional diversity changes with subsurface redox conditions duringin situuranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance ofdsrABgenes (dissimilatory sulfite reductase genes) and methane generation-relatedmcrgenes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily fromGeobactersp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect thein situredox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation.


Author(s):  
Gérard Brogniez ◽  
Christophe Pietras ◽  
Michel Legrand ◽  
Philippe Dubuisson ◽  
Martial Haeffelin

2015 ◽  
Vol 95 (8) ◽  
pp. 1607-1612 ◽  
Author(s):  
E.S. Mekhova ◽  
P.Y. Dgebuadze ◽  
V.N. Mikheev ◽  
T.A. Britayev

Previous experiments with the comatulid Himerometra robustipinna (Carpenter, 1881) demonstrated intensive host-to-host migration processes for almost all symbiotic species both within host aggregations and among hosts separated by several metres. The aim of this study was to check the ability of symbionts to complete long-distance migrations, by means of two in situ experiments which depopulated the crinoid host. Two different sets of field experiments were set up: exposure of depopulated crinoids (set 1) on stony ‘islands’ isolated from native crinoid assemblages by sandy substrate, and (set 2) in cages suspended in the water column. Hosts from set 1 were exposed for 1, 2, 3 and 4 weeks to assess whether substrate has an influence on the symbionts' long-distance migrations. In set 2 cages were exposed for 10–11 days, aiming to check whether symbionts were able to disperse through the water column with currents. These experiments allow the conclusion that post-settled symbionts can actively migrate among their hosts. Symbionts are able to reach their hosts by employing two different ‘transport corridors’, by drifting or swimming in water column, and by moving on the bottom. Comparison of experimental results allows the division of symbionts into two conventional groups according to the dispersal ability of their post-settled stages: (1) species able to complete long-distance migrations, (2) species unable to migrate or having limited dispersal ability. The finding of the free-living shrimp Periclimenes diversipes Kemp, 1922 in set 2 raises the question about the factors that affect such a high degree of specialization of crinoid assemblages.


2018 ◽  
Vol 344 ◽  
pp. 190-228
Author(s):  
Abdellatif Agouzal ◽  
Karam Allali ◽  
Siham Binna

2019 ◽  
Vol 31 (11) ◽  
pp. 04019258 ◽  
Author(s):  
Avishreshth Singh ◽  
Gaddam Sai Jagadeesh ◽  
Prasanna Venkatesh Sampath ◽  
Krishna Prapoorna Biligiri

Sign in / Sign up

Export Citation Format

Share Document