Different Approaches to the Investigation and Testing of the Ni-Based Self-Fluxing Alloy Coatings—A Review. Part 2: Microstructure, Adhesive Strength, Cracking Behavior, and Residual Stresses Investigations

2014 ◽  
Vol 57 (6) ◽  
pp. 980-1000 ◽  
Author(s):  
Katica Simunovic ◽  
Tomislav Saric ◽  
Goran Simunovic
2020 ◽  
pp. 2050009
Author(s):  
Haoliang Zhou ◽  
Ali Mehmanparast ◽  
Kamran Nikbin

Reheat cracking in an ex-service Type 316H stainless steel steam header component has been investigated in this study. The examined steam header was in service for 87,790[Formula: see text]h and the cracks in this component were found in the vicinity of the weld toe. The root cause of this type of failure was due to the welding residual stresses. The welding-induced residual stresses had been present in the header at the early stage of the operation and were released during service. In this paper, a novel technique has been proposed to simulate the residual stress distribution normal to the crack direction by applying remote fixed displacement boundary conditions in an axisymmetric model. This approach can simulate the presence of residual stresses in actual components without the need to develop full weld simulation to quantify them. The predicted residual stress levels and distributions normal to the crack direction have been found in good agreement with the measured residual stresses available in the literature for a similar header. The creep crack growth (CCG) rates have been characterized using the fracture mechanics [Formula: see text] parameter and estimated using predictive models.


Author(s):  
Robert E. Kurth ◽  
Cédric J. Sallaberry ◽  
Frederick W. Brust ◽  
Elizabeth A. Kurth ◽  
Michael L. Benson ◽  
...  

NRC Standard Review Plan (SRP) 3.6.3 describes Leak-Before-Break (LBB) assessment procedures that can be used to assess compliance with the 10CFR50 Appendix A, GDC-4 requirement that primary system pressure piping exhibit an extremely low probability of rupture. SRP 3.6.3 does not allow for assessment of piping systems with active degradation mechanisms, such as Primary Water Stress Corrosion Cracking (PWSCC) which is currently occurring in systems that have been granted LBB approvals. US NRC staff, working cooperatively with the Electric Power Research Institute through a memorandum of understanding, conducted a multi-year project that focused on the development of a viable method and approach to address the effects of PWSCC in primary piping systems approved for LBB. This project, called eXtremely Low Probability of Rupture (xLPR) [1], defined the requirements necessary for a modular-based probabilistic fracture mechanics assessment tool to directly assess compliance with the regulations. Using the lessons learned from the pilot study, the production version of this code, designated as Version 2.0, focused on those primary piping systems previously approved for LBB. In this version the appropriate fracture mechanics-based models are employed to model the physical cracking behavior and a variety of computational options are provided to characterize, categorize and propagate problem uncertainties. One of the most influential uncertainty on risk in the xLPR code is the one associated with weld residual stresses (WRS). WRS plays a key role in both crack initiation and crack growth. PWSCC is mainly driven by tensile stresses, whose major contributors are the tensile weld residual stresses that develop during fabrication of the piping system. Handling the uncertainty involved with WRS within a probabilistic framework is quite challenging. A companion paper presents the selected approach to represent uncertainty within the framework of the xLPR code while respecting a set of requirements in term of smoothness of profile, efficiency of (potential) importance sampling and (for axial WRS) equilibrium. This paper illustrate with examples the implementation of the described methods into xLPR v2.0.


2022 ◽  
Vol 40 (1) ◽  
pp. 013414
Author(s):  
K. Bobzin ◽  
T. Brögelmann ◽  
N. C. Kruppe ◽  
H. J. Maier ◽  
T. Heidenblut ◽  
...  

Author(s):  
Robert E. Kurth ◽  
Cédric J. Sallaberry ◽  
Frederick W. Brust ◽  
Elizabeth A. Kurth ◽  
Michael L. Benson ◽  
...  

NRC Standard Review Plan (SRP) 3.6.3 describes Leak-Before-Break (LBB) assessment procedures that can be used to assess compliance with the 10CFR50 Appendix A, GDC-4 requirement that primary system pressure piping exhibit an extremely low probability of rupture. SRP 3.6.3 does not allow for assessment of piping systems with active degradation mechanisms, such as Primary Water Stress Corrosion Cracking (PWSCC) which is currently occurring in systems that have been granted LBB approvals. US NRC staff, working cooperatively with the Electric Power Research Institute through a memorandum of understanding, conducted a multi-year project that focused on the development of a viable method and approach to address the effects of PWSCC in primary piping systems approved for LBB. This project, called eXtremely Low Probability of Rupture (xLPR), defined the requirements necessary for a modular-based probabilistic fracture mechanics assessment tool to directly assess compliance with the regulations [1]. Using the lessons learned from the pilot study [2] the production version of this code, designated as Version 2.0, focused on those primary piping systems previously approved for LBB [3]. In this version the appropriate fracture mechanics-based models are employed to model the physical cracking behavior and a variety of computational options are provided to characterize, categorize and propagate problem uncertainties. One of the most influential sources of uncertainty on risk in the xLPR code is the one associated with weld residual stresses (WRS). WRS plays a key role in both crack initiation and crack growth. PWSCC is mainly driven by tensile stresses, whose major contributors are the tensile weld residual stresses that develop during fabrication of the piping system. Handling the uncertainty involved with WRS within a probabilistic framework is quite challenging. This paper presents the selected approach to represent uncertainty within the framework of the xLPR code while respecting a set of requirements in term of smoothness of profile, efficiency of (potential) importance sampling and (for axial WRS) equilibrium. The current WRS sampling scheme employs correlation in order to smooth the shape of the WRS fields through the thickness of a dissimilar metal weld. This method presents an enrichment of the Cholesky decomposition on the correlation matrix, in order to satisfy the other two requirements.


2007 ◽  
Author(s):  
Majdi R Abou Najm ◽  
Rabi H Mohtar ◽  
Jason W Weiss ◽  
Erik Braudeau

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 844 ◽  
Author(s):  
Xuesen Lv ◽  
Yao Qin ◽  
Zhaoxu Lin ◽  
Zhenkun Tian ◽  
Xuemin Cui

Coating technology can be applied to decorate building constructions. Alkali-activated materials (AAM) are promising green and durable inorganic binders which show potential for development as innovative coating. In the paper, the possibility of using AAM composited with starch (CMS) as a novel plastic formable inorganic coating for decorating in building was investigated. The rheological properties, including plastic viscosity, yield stress, and thixotropy were considered to be critical properties to obtain the working requirements. Four different mixtures were systematically investigated to obtain the optimum formulation, and then were used to study their hardened properties, such as mechanical strengths (compressive, flexural, and adhesive strength), drying shrinkage, cracking behavior, and microstructure. Study results found that CMS could quickly and efficiently be hydrolyzed in an alkaline solution to produce organic plastic gel which filled in AAM paste, leading to the significant improvement of coating consistency, plastic viscosity, and thixotropy. The optimum coating composited with 15.40 wt% CMS shows a relatively stable rheological development, the setting time sufficient at higher than 4 h. Furthermore, CMS shows a significant positive effect on the cracking and shrinkage control due to padding effect and water retention of CMS, which results in no visible cracks on the coating surface. Although the mechanical strength development is relatively lower than that of plain AAM, its value, adhesive strength 2.11 MPa, compressive strength 55.09 MPa, and flexural strength 8.06 MPa highly meet the requirements of a relevant standard.


2002 ◽  
Vol 12 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Y. Zamachtchikov ◽  
F. Breaban ◽  
P. Vantomme ◽  
A. Deffontaine

Sign in / Sign up

Export Citation Format

Share Document