Surface Contact Fatigue Failure Assessment in Spur Gears Using Lubricant Film Thickness and Vibration Signal Analysis

2015 ◽  
Vol 58 (2) ◽  
pp. 327-336 ◽  
Author(s):  
M. Amarnath ◽  
C. Sujatha
Lubricants ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 48 ◽  
Author(s):  
Matthew David Marko

An effort was made to find a relationship between the lubricant thickness at the point of contact of rolling element ball bearings, and empirical equations to predict the life for bearings under constant motion. Two independent failure mechanisms were considered, fatigue failure and lubricant failure resulting in seizing of the roller bearing. A theoretical formula for both methods was established for the combined probability of failure using both failure mechanisms. Fatigue failure was modeled with the empirical equations of Lundberg and Palmgren and standardized in DIN/ISO281. The seizure failure, which this effort sought to investigate, was predicted using Greenwood and Williamson’s theories on surface roughness and asperities during lubricated contact. These two mechanisms were combined, and compared to predicted cycle lives of commercial roller bearing, and a clear correlation was demonstrated. This effort demonstrated that the Greenwood–Williams theories on the relative height of asperities versus lubricant film thickness can be used to predict the probability of a lubricant failure resulting in a roller bearing seizing during use.


Tribology ◽  
2006 ◽  
Author(s):  
Radek Poliscuk ◽  
Michal Vaverka ◽  
Martin Vrbka ◽  
Ivan Krupka ◽  
Martin Hartl

Surface topography significantly influences the behavior of lubricated contacts between highly loaded machine elements. Most oil- or grease- lubricated machine elements such as gears, rolling bearings, cams and traction drives operate in mixed lubrication conditions and the lubricant film thickness is directly related to the main practical performance parameters such as function, wear, contact fatigue and scuffing. For determination wear and especially contact fatigue, the values and distribution of the pressure in rolling contact are required. The theoretical studies usually involve the numerical solution of pressure and film thickness in the contact, using some physical mathematical model built around the Reynolds equation to describe the flow and the theory of elastic deformation of semi-infinite bodies. Such calculations can be extremely time consuming, especially when lubricant films are very thin and/or contact load very high. This study is aimed at obtaining pressure distribution within lubricated contact from measured film thickness. Lubricant film thickness distribution within the whole concentrated contact is evaluated from chromatic interferograms by thin film colorimetric interferometry. Consequently, an elastic deformation is separated from the film thickness, geometry and mutual approach of the surfaces. Calculation of the pressure distribution is based on inverse elasticity theory. EHD lubricated contact with smooth surfaces of solids was first investigated. Calculated pressure, distributions were compared with data obtained from full numerical solution to check the accuracy. The approach was also applied to surfaces with dents and their influence on distribution of pressure in lubricant film.


Author(s):  
Matthew Marko

An effort was made to find a relationship between the ratio of average asperities height and lubricant thickness at the point of contact of rolling element ball bearings, and empirical equations to predict the life for bearings under constant motion. Two independent failure mechanisms were considered, fatigue failure and lubricant failure resulting in seizing of the roller bearing. A theoretical formula for both of these methods was established for the combined probability of failure using both of these failure mechanisms. Fatigue failure was modeled with the empirical equations of Lundberg and Palmgren and standardized in DIN/ISO281. The seizure failure, which this effort sought to investigate, was predicted using Greenwood and Williamson's theories on surface roughness and asperities during lubricated contact. These two mechanisms were combined, and compared to predicted cycle lives of commercial roller bearing, and a clear correlation was demonstrated. This effort demonstrated that the Greenwood-Williams theories on the relative height of asperities versus lubricant film thickness can be used to predict the probability of a lubricant failure resulting in a roller bearing seizing during use.


Author(s):  
Ma Hao ◽  
Yao Chuang ◽  
Duan Minghui ◽  
Wei Jufang ◽  
Zhang Xin ◽  
...  

Author(s):  
Ruqiang Yan ◽  
Robert X. Gao ◽  
Kang B. Lee ◽  
Steven E. Fick

This paper presents a noise reduction technique for vibration signal analysis in rolling bearings, based on local geometric projection (LGP). LGP is a non-linear filtering technique that reconstructs one dimensional time series in a high-dimensional phase space using time-delayed coordinates, based on the Takens embedding theorem. From the neighborhood of each point in the phase space, where a neighbor is defined as a local subspace of the whole phase space, the best subspace to which the point will be orthogonally projected is identified. Since the signal subspace is formed by the most significant eigen-directions of the neighborhood, while the less significant ones define the noise subspace, the noise can be reduced by converting the points onto the subspace spanned by those significant eigen-directions back to a new, one-dimensional time series. Improvement on signal-to-noise ratio enabled by LGP is first evaluated using a chaotic system and an analytically formulated synthetic signal. Then analysis of bearing vibration signals is carried out as a case study. The LGP-based technique is shown to be effective in reducing noise and enhancing extraction of weak, defect-related features, as manifested by the multifractal spectrum from the signal.


Sign in / Sign up

Export Citation Format

Share Document