Design, Synthesis, and Molecular Docking of Novel Hybrids of Coumarin-Dithiocarbamate Alpha-Glucosidase Inhibitors Targeting Type 2 Diabetes Mellitus

Author(s):  
Emad Elahabaadi ◽  
Amir Ahmad Salarian ◽  
Ehsan Nassireslami
Author(s):  
F Van de Laar ◽  
S Wang ◽  
P Lucassen ◽  
E Van de Lisdonk ◽  
H Van den Hoogen ◽  
...  

Author(s):  
Floris A Van de Laar ◽  
Peter LBJ Lucassen ◽  
Reinier P Akkermans ◽  
Eloy H Van de Lisdonk ◽  
Guy EHM Rutten ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1776 ◽  
Author(s):  
Zhihua Liu ◽  
Ying Yang ◽  
Wujun Dong ◽  
Quan Liu ◽  
Renyun Wang ◽  
...  

α-glucosidase inhibitors (AGIs) have been an important category of oral antidiabetic drugs being widely exploited for the effective management of type 2 diabetes mellitus. However, the marketed AGIs not only inhibited the disaccharidases, but also exhibited an excessive inhibitory effect on α-amylase, resulting in undesirable gastrointestinal side effects. Compared to these agents, Ramulus Mori alkaloids (SZ-A), was a group of effective alkaloids from natural Morus alba L., and showed excellent hypoglycemic effect and fewer side effects in the Phase II/III clinical trials. Thus, this paper aims to investigate the selective inhibitory effect and mechanism of SZ-A and its major active ingredients (1-DNJ, FA and DAB) on different α-glucosidases (α-amylase and disaccharidases) by using a combination of kinetic analysis and molecular docking approaches. From the results, SZ-A displayed a strong inhibitory effect on maltase and sucrase with an IC50 of 0.06 μg/mL and 0.03 μg/mL, respectively, which was similar to the positive control of acarbose with an IC50 of 0.07 μg/mL and 0.68 μg/mL. With regard to α-amylase, SZ-A exhibited no inhibitory activity at 100 μg/mL, while acarbose showed an obvious inhibitory effect with an IC50 of 1.74 μg/mL. The above analysis demonstrated that SZ-A could selectively inhibit disaccharidase to reduce hyperglycemia with a reversible competitive inhibition, which was primarily attributed to the three major active ingredients of SZ-A, especially 1-DNJ molecule. In the light of these findings, molecular docking study was utilized to analyze their inhibition mechanisms at molecular level. It pointed out that acarbose with a four-ring structure could perform desirable interactions with various α-glucosidases, while the three active ingredients of SZ-A, belonging to monocyclic compounds, had a high affinity to the active site of disaccharidases through forming a wide range of hydrogen bonds, whose affinity and consensus score with α-amylase was significantly lower than that of acarbose. Our study illustrates the selective inhibition mechanism of SZ-A on α-glucosidase for the first time, which is of great importance for the treatment of type 2 diabetes mellitus.


Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Samuel Tilahun Assefa ◽  
Eun-Young Yang ◽  
Soo-Young Chae ◽  
Mihye Song ◽  
Jundae Lee ◽  
...  

Type-2 diabetes mellitus is one of the most prevalent metabolic diseases in the world, and is characterized by hyperglycemia (i.e., high levels of glucose in the blood). Alpha-glucosidases are enzymes in the digestive tract that hydrolyze carbohydrates into glucose. One strategy that has been developed to treat type-2 diabetes is inhibition of the activity of alpha-glucosidases using synthetic drugs. However, these inhibitors are usually associated with gastrointestinal side effects. Therefore, the development of inhibitors from natural products offers an alternative option for the control of hyperglycemia. In recent years, various studies have been conducted to identify alpha-glucosidases inhibitors from natural sources such as plants, and many candidates have transpired to be secondary metabolites including alkaloids, flavonoids, phenols, and terpenoids. In this review, we focus on the alpha-glucosidases inhibitors found in common vegetable crops and the major classes of phytochemicals responsible for the inhibitory activity, and also as potential/natural drug candidates for the treatment of type-2 diabetes mellitus. In addition, possible breeding strategies for production of improved vegetable crops with higher content of the inhibitors are also described.


Author(s):  
AHMAD ZONOUBI ◽  
PRASHANTHA CN ◽  
D VISAGA PERUMAL ◽  
ZAHRA MAFIBANIASADI

Objective: Type 2 diabetes mellitus (T2DM) is an acute metabolic disorder, in which the vogue is increasing persistently globally. The maltase-glucoamylase/alpha-glucosidase inhibitor is an oral antidiabetic drug collectively, which is utilizing for regulating carbohydrates that ordinarily transformed into simple sugars and absorbed by the intestine. Researchers need to constantly explore alternative therapeutic strategies for the clinical management of DM due to the increased adverse event caused by conservative antidiabetic agents. The present study proposes a substitute drug to examine the seven bioactive phytocomponents of Silybum marianum (milk thistle) that can regulate the hyperglycemia by downregulating alpha-glucosidase and its activity. Methods: Different integrated web-based in silico tools and techniques were used to model the enzyme (receptor) as well as to determine the druggability of different active constituents of silymarin and their pharmacokinetics were predicted. Further, the active site of the enzyme was predicted followed by molecular docking method. Results: The results show silychristin A and silydianin having less carcinogenicity and strong interaction to the target protein (alpha-glucosidase) compare to the reference drugs (acarbose and miglitol) and these two molecules can be used for the best drug molecules in T2DM. Conclusion: In the proposed study, the in silico analysis helps researchers to utilize these compounds for clinical applications. The conclusion also suggests that synthetically and semi-synthetically, nucleus and peripheral modifications, either in the form of skeletal rearrangements or partial degradations as well as functional group addition and replacement of the active molecules present in silymarin giving access to new structural motifs, which can be used in future as a lead compounds for antagonising the alpha-glucosidase in the treatment of diabetes mellitus.


2022 ◽  
Author(s):  
Ming He ◽  
Yuhan Zhai ◽  
Yuqing Zhang ◽  
Shuo Xu ◽  
Shaoxuan Yu ◽  
...  

α-Glucosidase is related to the increase of postprandial blood glucose in vivo. Inhibition of α-glucosidase is supposed to be an effective approach to treat type 2 diabetes mellitus (T2DM). Trilobatin,...


Sign in / Sign up

Export Citation Format

Share Document