Evaluation of the interfacial conduction heat transfer coefficient in two-temperature macroscopic models of homogenous porous media using a fully developed unsteady microscopic model in periodic unit cells

2017 ◽  
Vol 71 (3) ◽  
pp. 236-252 ◽  
Author(s):  
Massimo Cimmino ◽  
Bantwal Rabi Baliga
2005 ◽  
Vol 128 (5) ◽  
pp. 444-452 ◽  
Author(s):  
Marcelo B. Saito ◽  
Marcelo J. S. de Lemos

Interfacial heat transfer coefficients in a porous medium modeled as a staggered array of square rods are numerically determined. High and low Reynolds k-ϵ turbulence models are used in conjunction of a two-energy equation model, which includes distinct transport equations for the fluid and the solid phases. The literature has documented proposals for macroscopic energy equation modeling for porous media considering the local thermal equilibrium hypothesis and laminar flow. In addition, two-energy equation models have been proposed for conduction and laminar convection in packed beds. With the aim of contributing to new developments, this work treats turbulent heat transport modeling in porous media under the local thermal nonequilibrium assumption. Macroscopic time-average equations for continuity, momentum, and energy are presented based on the recently established double decomposition concept (spatial deviations and temporal fluctuations of flow properties). The numerical technique employed for discretizing the governing equations is the control volume method. Turbulent flow results for the macroscopic heat transfer coefficient, between the fluid and solid phase in a periodic cell, are presented.


Author(s):  
Akira Matsui ◽  
Kazuhisa Yuki ◽  
Hidetoshi Hashizume

Detailed heat transfer characteristics of particle-sintered porous media and metal foams are evaluated to specify the important structural parameters suitable for high heat removal. The porous media used in this experiment are particle-sintered porous media made of bronze and SUS316L, and metal foams made of copper and nickel. Cooling water flows into the porous medium opposite to heat flux input loaded by a plasma arcjet. The result indicates that the bronze-particle porous medium of 100μm in pore size shows the highest performance and achieves heat transfer coefficient of 0.035MW/m2K at inlet heat flux 4.6MW/m2. Compared with the heat transfer performance of copper fiber-sintered porous media, the bronze particlesintered ones give lower heat transfer coefficient. However, the stable cooling conditions that the heat transfer coefficient does not depend on the flow velocity, were confirmed even at heat flux of 4.6MW/m2 in case of the bronze particle-sintered media, while not in the case of the copper-fiber sintered media. This signifies the possibility that the bronze-particle sintered media enable much higher heat flux removal of over 10MW/m2, which could be caused by higher permeability of the particle-sintered pore structures. Porous media with high permeability provide high performance of vapor evacuation, which leads to more stable heat removal even under extremely high heat flux. On the other hand, the heat transfer coefficient of the metal foams becomes lower because of the lower capillary and fin effects caused by too high porosity and low effective thermal conductivity. It is concluded that the pore structure having high performance of vapor evacuation as well as the high capillary and high fin effects is appropriate for extremely high heat flux removal of over 10MW/m2.


Author(s):  
Shigeki Hirasawa ◽  
Tsuyoshi Kawanami ◽  
Katsuaki Shirai

We studied the forced convection heat transfer performance and pressure drop of high permeability metal cellular porous media in air flow using a 3-dimensional thermofluid computation code. The temperature and velocity distributions in the air flow region, local heat transfer coefficient, and local heat flux on the surface of the porous media were numerically calculated for steady air flow by changing the parameters of the pore size and air velocity. The cellular porous media were modeled by pin array, cube geometry, and truncated octahedron geometry using thin wires. The diameter of the wires was 0.1 mm, and the pore per inch (PPI) was 5–50. The relations between the Nusselt number using the volumetric heat transfer coefficient and the Reynolds number were obtained from our calculation results, and we compared them with conventionally proposed experimental correlations. Also, the pressure drop calculation result was compared with conventionally proposed experimental correlations. The following results were obtained. The local heat transfer coefficient and local heat flux on the surface of porous media were small near the joint positions of the wires of the cellular porous media because of the thermal boundary layer. The volumetric heat transfer coefficient and pressure drop agreed with conventionally proposed experimental correlations within errors of twice the volumetric heat transfer coefficient and pressure drop. The relation between the heat transfer rate per unit volume and the heat transfer area per unit volume agreed with the convection heat transfer correlation for a tube bundle.


Sign in / Sign up

Export Citation Format

Share Document