Dependence of Heat Transfer Coefficient on Porous Structure in Porous Media

Author(s):  
Akira Matsui ◽  
Kazuhisa Yuki ◽  
Hidetoshi Hashizume

Detailed heat transfer characteristics of particle-sintered porous media and metal foams are evaluated to specify the important structural parameters suitable for high heat removal. The porous media used in this experiment are particle-sintered porous media made of bronze and SUS316L, and metal foams made of copper and nickel. Cooling water flows into the porous medium opposite to heat flux input loaded by a plasma arcjet. The result indicates that the bronze-particle porous medium of 100μm in pore size shows the highest performance and achieves heat transfer coefficient of 0.035MW/m2K at inlet heat flux 4.6MW/m2. Compared with the heat transfer performance of copper fiber-sintered porous media, the bronze particlesintered ones give lower heat transfer coefficient. However, the stable cooling conditions that the heat transfer coefficient does not depend on the flow velocity, were confirmed even at heat flux of 4.6MW/m2 in case of the bronze particle-sintered media, while not in the case of the copper-fiber sintered media. This signifies the possibility that the bronze-particle sintered media enable much higher heat flux removal of over 10MW/m2, which could be caused by higher permeability of the particle-sintered pore structures. Porous media with high permeability provide high performance of vapor evacuation, which leads to more stable heat removal even under extremely high heat flux. On the other hand, the heat transfer coefficient of the metal foams becomes lower because of the lower capillary and fin effects caused by too high porosity and low effective thermal conductivity. It is concluded that the pore structure having high performance of vapor evacuation as well as the high capillary and high fin effects is appropriate for extremely high heat flux removal of over 10MW/m2.

Author(s):  
Lulu Lv ◽  
Yanchen Fu ◽  
Bensi Dong ◽  
Jie Wen ◽  
Guoqiang Xu

Abstract The presented study numerically investigated the heat transfer characteristics of supercritical hydrocarbon fuel RP-3 in a vertical tube under overweight conditions with gravitational accelerations from 1g to 5g. The model was simplified as a vertical tube with the diameter of 1.8mm and the length of 250mm. Constant heat flux was applied to the wall, varying from 200kW/m2 to 700kW/m2. Variations of wall temperature and heat transfer coefficient under overweight conditions were obtained by simulation. The dimensionless buoyancy and thermal acceleration under different conditions were analyzed. The results show that the heat transfer is normal at low heat flux, while two types of heat transfer deterioration were observed in both upward and downward supercritical flow at high heat flux. The heat transfer coefficient of downward flow is generally higher than upward flow, and the difference between them becomes larger with the increase of gravitational acceleration. At high heat flux, when bulk temperature reaches the pseudo-critical temperature, the thermal acceleration will increase by 50% leading to the deterioration of heat transfer. However, after the pseudo-critical point, both buoyancy force and thermal acceleration decrease to negligible. The rise in gravitational acceleration enhances buoyancy force, but has no impact on the thermal acceleration. Based on the numerical analysis, two different criterion, Bo* and Kv, for supercritical RP-3 are obtained to present the influence of buoyancy and thermal acceleration.


Two-phase closed thermosiphon system for cooling high heat flux electronic devices was constructed and tested on a lab scale. The performance of the thermosyphon system was investigated using R-134a as a working fluid. The effect of heat flux and the refrigerant pressure on the evaporator side heat transfer coefficient were investigated. It was found that the heat transfer coefficient increases by increasing the heat flux on the evaporator or by reducing the inside pressure. The effect of heat transfer mode of the condenser (natural or forced) also affected the overall heat transfer coefficient in the cycle. At the 200W heating load, the values of the heat transfer coefficients were 32 and 1.5 kW/m². ˚C, for natural and forced convection modes, respectively. The temperature difference between the evaporator and the refrigerant saturation pressure was found to be dependent on heat flux and the pressure inside the system. At 40 W heating load, the heat transfer coefficient was calculated to be 500, 3000 and 7300 W/oC.m2 at 0.152, .135 and 0.117 reduced pressure, respectively. It can be concluded that such a thermosyphon system can be used to cool high heat flux devices. This can be done using an environmentally friendly refrigerant and without any need for power to force the convection at the condenser.


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 55
Author(s):  
Gennaro Criscuolo ◽  
Wiebke Brix Markussen ◽  
Knud Erik Meyer ◽  
Björn Palm ◽  
Martin Ryhl Kærn

This study aims to characterize experimentally the heat transfer in micro-milled multi-microchannels copper heat sinks operating with flow boiling, in the attempt to contribute to the development of novel and high heat flux thermal management systems for power electronics. The working fluid was R-134a and the investigation was conducted for a nominal outlet saturation temperature of 30 ∘C. The microchannels were 1 cm long and covered a square footprint area of 1 cm2. Boiling curves starting at low vapor quality and average heat transfer coefficients were obtained for nominal channel mass fluxes from 250 kg/m2s to 1100 kg/m2s. The measurements were conducted by gradually increasing the power dissipation over a serpentine heater soldered at the bottom of the multi-microchannels, until a maximum heater temperature of 150 ∘C was reached. Infrared thermography was used for the heater temperature measurements, while high-speed imaging through a transparent top cover provided visual access over the entire length of the channels. The average heat transfer coefficient increased with the dissipated heat flux until a decrease dependent on hydrodynamic effects occurred, possibly due to incomplete wall wetting. Depending on the channel geometry, a peak value of 200 kW/m2K for the footprint heat transfer coefficient and a maximum dissipation of 620 W/cm2 at the footprint with a limit temperature of 150 ∘C could be obtained, showing the suitability of the investigated geometries in high heat flux cooling of power electronics. The experimental dataset was used to assess the prediction capability of selected literature correlations. The prediction method by Bertsch et al. gave the best agreement with a mean absolute percent error of 24.5%, resulting to be a good design tool for flow boiling in high aspect ratio multi-microchannels as considered in this study.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Avijit Bhunia ◽  
C. L. Chen

The necessity for an efficient thermal management system covering large areas is growing rapidly with the push toward more electric systems. A significant amount of research over the past 2 decades has conclusively proved the suitability of jet, droplet, or spray impingement for high heat flux cooling. However, all these research consider small heat source areas, typically about a few cm2. Can a large array of impingement pattern, covering a much wider area, achieve similar heat flux levels? This article presents liquid microjet array impingement cooling of a heat source that is about two orders of magnitude larger than studied in the previous works. Experiments are carried out with 441 jets of de-ionized water and a dielectric liquid HFE7200, each 200 μm diameter. The jets impinge on a 189 cm2 area surface, in free surface and confined jet configurations. The average heat transfer coefficient values of the present experiment are compared with correlations from the literature. While some correlations show excellent agreement, others deviate significantly. The ensuing discussion suggests that the post-impingement liquid dynamics, particularly the collision between the liquid fronts on the surface created from surrounding jets, is the most important criterion dictating the average heat transfer coefficient. Thus, similar thermal performance can be achieved, irrespective of the length scale, as long as the flow dynamics are similar. These results prove the scalability of the liquid microjet array impingement technique for cooling a few cm2 area to a few hundred cm2 area.


1969 ◽  
Vol 91 (1) ◽  
pp. 27-36 ◽  
Author(s):  
B. S. Shiralkar ◽  
Peter Griffith

At slightly supercritical pressure and in the neighborhood of the pseudocritical temperature (which corresponds to the peak in the specific heat at the operating pressure), the heat transfer coefficient between fluid and tube wall is strongly dependent on the heat flux. For large heat fluxes, a marked deterioration takes place in the heat transfer coefficient in the region where the bulk temperature is below the pseudocritical temperature and the wall temperature above the pseudocritical temperature. Equations have been developed to predict the deterioration in heat transfer at high heat fluxes and the results compared with previously available results for steam. Experiments have been performed with carbon dioxide for additional comparison. Limits of safe operation for a supercritical pressure heat exchanger in terms of the allowable heat flux for a particular flow rate have been determined theoretically and experimentally.


2017 ◽  
Vol 64 (4) ◽  
pp. 519-531 ◽  
Author(s):  
Amir Arya ◽  
Saeed Shahmiry ◽  
Vahid Nikkhah ◽  
Mohamad Mohsen Sarafraz

Abstract Experimental investigation was conducted on the thermal performance and pressure drop of a convective cooling loop working with ZnO aqueous nanofluids. The loop was used to cool a flat heater connected to an AC autotransformer. Influence of different operating parameters, such as fluid flow rate and mass concentration of nanofluid on surface temperature of heater, pressure drop, friction factor and overall heat transfer coefficient was investigated and briefly discussed. Results of this study showed that, despite a penalty for pressure drop, ZnO/water nanofluid was a promising coolant for cooling the micro-electronic devices and chipsets. It was also found that there is an optimum for concentration of nanofluid so that the heat transfer coefficient is maximum, which was wt. % = 0.3 for ZnO/water used in this research. In addition, presence of nanoparticles enhanced the friction factor and pressure drop as well; however, it is not very significant in comparison with those of registered for the base fluid.


Author(s):  
Nae-Hyun Kim ◽  
Wang-Kyu Oh ◽  
Jung-Ho Ham ◽  
Do-Young Kim ◽  
Tae-Ryong Shin

Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with Dh = 1.41 mm. The test range covered mass flux from 100 to 600 kg/m2 s, heat flux from 5 to 15 kW/m2 and saturation temperature from 5°C to 15°C. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique ‘cross-over’ of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.


Author(s):  
Wei Tong ◽  
Alireza Ganjali ◽  
Omidreza Ghaffari ◽  
Chady Alsayed ◽  
Luc Frechette ◽  
...  

Abstract In a two-phase immersion cooling system, boiling on the spreader surface has been experimentally found to be non-uniform, and it is highly related to the surface temperature and the heat transfer coefficient. An experimentally obtained temperature-dependent boiling heat transfer coefficient has been applied to a numerical model to investigate the spreader's cooling performance. It is found that the surface temperature distribution becomes less uniform with higher input power. But it is more uniform when the thickness is increased. By defining the characteristic temperatures that represent different boiling regimes on the surface, the fraction of the surface area that has reached the critical heat flux has been numerically calculated, showing that increasing the thickness from 1 mm to 6 mm decreases the critical heat flux reached area by 23% at saturation liquid temperatures. Therefore, on the thicker spreader, more of the surface is utilized for nucleate boiling while localized hot regions that lead to surface dry-out are avoided. At a base temperature of 90 oC, the optimal thickness is found to be 4 mm, beyond which no significant improvement in heat removal can be obtained. Lower coolant temperatures can further increase the heat removal; it is reduced from an 18% improvement in the input power for the 1 mm case to only 3% in the 6 mm case for a coolant temperature drop of 24 oC. Therefore, a trade-off exists between the cost of maintaining the low liquid temperature and the increased heat removal capacity.


Sign in / Sign up

Export Citation Format

Share Document