Starch granule size: Does it matter?

Author(s):  
Ming Li ◽  
Venea Dara Daygon ◽  
Vicky Solah ◽  
Sushil Dhital
Keyword(s):  
2002 ◽  
Vol 108 (2) ◽  
pp. 200-203 ◽  
Author(s):  
V. Psota ◽  
I. Bohačenko ◽  
J. Hartmann ◽  
M. Budinská ◽  
J. Chmelík

2017 ◽  
Vol 77 ◽  
pp. 211-218 ◽  
Author(s):  
Jieyun Li ◽  
Awais Rasheed ◽  
Qi Guo ◽  
Yan Dong ◽  
Jindong Liu ◽  
...  

2020 ◽  
Vol 25 (2) ◽  
pp. 71
Author(s):  
Dwi Ajias Pramasari ◽  
Dewi Sondari ◽  
Danang Sudarwoko Adi ◽  
Bernadeta Ayu Widyaningrum ◽  
Anugerah Fajar ◽  
...  

Microporous starch can be used as oil adsorbent agent. The microporous starch can be produced through partial hydrolysis at temperature below gelatinization point using amylase. On the other hand, the study of amylase produced from Indonesian sea microbe, especially Brevibacterium sp. was rarely studied. Therefore, this paper discusses the tapioca characteristic made from Brevibacterium sp. amylase (treatment A) and commercial amylase (treatment B) as oil adsorbent agent. The result showed that the yield from treatment A and B was 74.65% and 12.75% while the starch granule size was 14.60 μm and 12,59 μm. The adsorbent test showed adsorption level of oil palm were 91,08% and 142,14% while for olive oil were 94,70% and 133,17%, for treatment A and B, respectively. The morphological test showed the presence of pori on the granule surface for both treatments with FTIR assessment showed no significant change in chemical functional group for both treatments. The color analysis showed almost similar brightness level between two treatments. In the end, microporous starch of treatment A has prospect as oil adsorbent agent like the one from commercial amylase


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5859
Author(s):  
Qingting Liu ◽  
Yuan Zhou ◽  
Joerg Fettke

Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.


2019 ◽  
Vol 71 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Tansy Chia ◽  
Marcella Chirico ◽  
Rob King ◽  
Ricardo Ramirez-Gonzalez ◽  
Benedetta Saccomanno ◽  
...  

Abstract In Triticeae endosperm (e.g. wheat and barley), starch granules have a bimodal size distribution (with A- and B-type granules) whereas in other grasses the endosperm contains starch granules with a unimodal size distribution. Here, we identify the gene, BGC1 (B-GRANULE CONTENT 1), responsible for B-type starch granule content in Aegilops and wheat. Orthologues of this gene are known to influence starch synthesis in diploids such as rice, Arabidopsis, and barley. However, using polyploid Triticeae species, we uncovered a more complex biological role for BGC1 in starch granule initiation: BGC1 represses the initiation of A-granules in early grain development but promotes the initiation of B-granules in mid grain development. We provide evidence that the influence of BGC1 on starch synthesis is dose dependent and show that three very different starch phenotypes are conditioned by the gene dose of BGC1 in polyploid wheat: normal bimodal starch granule morphology; A-granules with few or no B-granules; or polymorphous starch with few normal A- or B-granules. We conclude from this work that BGC1 participates in controlling B-type starch granule initiation in Triticeae endosperm and that its precise effect on granule size and number varies with gene dose and stage of development.


2008 ◽  
Vol 34 (5) ◽  
pp. 795-802 ◽  
Author(s):  
Zhong-Min DAI ◽  
Yan-Ping YIN ◽  
Min ZHANG ◽  
Wen-Yang LI ◽  
Su-Hui YAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document