Modifying the plant proteins techno-functionalities by novel physical processing technologies: a review

Author(s):  
Madaraboina Venkateswara Rao ◽  
Sunil C. K. ◽  
Ashish Rawson ◽  
Chidanand D. V. ◽  
Venkatachlapathy N.
2012 ◽  
Vol 424-425 ◽  
pp. 592-597
Author(s):  
Zhi Yong Li ◽  
Shui Xiang Xie ◽  
Guang Cheng Jiang ◽  
Mu Tai Bao ◽  
Zhi Li Wang ◽  
...  

Disposing of oil-based drilling fluid with biotreatment technology has many advantages: it is only 30-50% of the expense of conventional chemical or physical processing technologies, has a low impact on the environment, with no secondary pollution, and utilizes local control and entails simple operations. After a series of collection, isolation, purification, cultivation and domestication of petroleum degrading bacterial, three strains were obtained that can effectively degrade petroleum hydrocarbons. The growth of the bacterial strains and the consequent crude oil degradation were found to be at the greatest rates using the following biochemical processing conditions. The strains were grown in ammonium nitrate and a small quantity of yeast powder at a temperature of 50°C and pH of 6.0. The strain quantity was 2%, and the rotating speed of the shaker was 180rpm. The biochemical disposal process and laboratory-scale simulation of processing devices of oil-based drilling fluid were also designed. The oil content of disposed oily waste mud generally was generally less than 2mg/L, and the degradability of the waste was over 98%. The performance index meets the requirement of the China’s offshore wastewater discharge standards.


2018 ◽  
Vol 2018 ◽  
pp. 1-2
Author(s):  
Daming Fan ◽  
Hui-Min David Wang ◽  
Srinivas Janaswamy ◽  
George A. Cavender

Nature ◽  
2008 ◽  
Author(s):  
Heidi Ledford
Keyword(s):  

Author(s):  
N. Golub ◽  
M. Potapova ◽  
M. Shinkarchuk ◽  
O. Kozlovets

The paper deals with the waste disposal problem of the alcohol industry caused by the widespread use of alcohol as biofuels. In the technology for the production of alcohol from cereal crops, a distillery spent wash (DSW) is formed (per 1 dm3 of alcohol – 10–20 dm3 DSW), which refers to highly concentrated wastewater, the COD value reaches 40 g O2/dm3. Since the existing physical and chemical methods of its processing are not cost-effective, the researchers develop the processing technologies for its utilization, for example, an anaerobic digestion. Apart from the purification of highly concentrated wastewater, the advantage of this method is the production of biogas and highquality fertilizer. The problems of biotechnology for biogas production from the distillery spent wash are its high acidity–pH 3.7–5.0 (the optimum pH value for the methanogenesis process is 6.8–7.4) and low nitrogen content, the lack of which inhibits the development of the association of microorganisms. In order to solve these problems, additional raw materials of various origins (chemical compounds, spent anaerobic sludge, waste from livestock farms, etc.) are used. The purpose of this work is to determine the appropriate ratio of the fermentable mixture components: cosubstrate, distillery spent wash and wastewater of the plant for co-fermentation to produce an energy carrier (biogas) and effective wastewater treatment of the distillery. In order to ensure the optimal pH for methanogenesis, poultry manure has been used as a co-substrate. The co-fermentation process of DSW with manure has been carried out at dry matter ratios of 1:1, 1:3, 1:5, 1:7 respectively. It is found that when the concentration of manure in the mixture is insufficient (DSW/manure – 1:1, 1:3), the pH value decreases during fermentation which negatively affects methane formation; when the concentration of manure in the mixture is increased (DSW/manure – 1:5, 1:7), the process is characterized by a high yield of biogas and methane content. The maximum output of biogas with a methane concentration of 70 ± 2% is observed at the ratio of components on a dry matter “wastewater: DSW: manure” – 0,2:1:7 respectively. The COD reduction reaches a 70% when using co-fermentation with the combination of components “wastewater: DSW: manure” (0,3:1:5) respectively.


Author(s):  
D.Y. Bolgova ◽  
◽  
N.A. Tarasenko ◽  
Z.S. Mukhametova ◽  
◽  
...  

Nutrition is an important factor that affects human health. The use of plant proteins as various additives in food production has now been actively developed. The rich chemical composition of pea grains determines the possibility of application in the food industry. Peas are characterized by good assimilability and degree of digestion.


2017 ◽  
Vol 19 (2) ◽  
pp. 131-139
Author(s):  
Kukuh Probo Sukmawati ◽  
Setyowati Setyowati ◽  
Th Ninuk Sri Hartini

  Background: Using of herbs and spices greatly affect the taste of foods, although the ingredients used are the same, different formulations of herbs will produce different flavors. Standardized seasonings are needed to produce a relatively similar food taste. Objective: The research aims to determine the use of herbs in animal and plant proteins. Method: This research was an observational research with cross sectional approach at PanembahanSenopati Hospital Bantul. The objects of this research were standardized seasonings inanimal and plant proteinsin the menu cycle of 10 days in Juny 2015. The data were analyzed descriptively and presented in tabular form and textural. Result: Standardized Seasonings in animal protein were B for satay and C for semur. Standardized seasonings in plant protein were B for bali, terik, rujak and D for bacem. The percentage of the use of seasoning than standardized seasoning for satay (148,7%), bali (130,3%), rujak(372%),for semur, terik and bacem the conformity are not not known because the standardized seasonings unwritten. The conformity of ingredient herbskind for satay (66,7%), semur (100%), bali (54,5%), rujak (50%), bacem (100%) and terik (100%). Conclusion:The conformity of herbs weight foranimal protein (124,3%) and plant protein (175,5%). The conformity of ingredient herbskind for animal protein (83,3%) and plant protein (76,1%). Standardized seasonings used were B, C and D.   Keywords: standardized seasonings, animal protein, plant protein


Sign in / Sign up

Export Citation Format

Share Document