Stationary shoulder friction stir welding – low heat input joining technique: a review in comparison with conventional FSW and bobbin tool FSW

Author(s):  
Devang Sejani ◽  
Wenya Li ◽  
Vivek Patel
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


2021 ◽  
Vol 23 (2) ◽  
pp. 98-115
Author(s):  
Alexey Ivanov ◽  
◽  
Valery Rubtsov ◽  
Andrey Chumaevskii ◽  
Kseniya Osipovich ◽  
...  

Introduction. One of friction stir welding types is the bobbin friction stir welding (BFSW) process, which allows to obtain welded joints in various configurations without using a substrate and axial embedding force, as well as to reduce heat loss and temperature gradient across the welded material thickness. This makes the BFSW process effective for welding aluminum alloys, which properties are determined by their structural-phase state. According to research data, the temperature and strain rate of the welded material have some value intervals in which strong defect-free joints are formed. At the same time, much less attention has been paid to the mechanisms of structure formation in the BFSW process. Therefore, to solve the problem of obtaining defect-free and strong welded joints by BFSW, an extended understanding of the basic mechanisms of structure formation in the welding process is required. The aim of this work is to research the mechanisms of structure formation in welded joint of AA2024 alloy obtained by bobbin tool friction stir welding with variation of the welding speed. Results and discussion. Weld formation conditions during BFSW process are determined by heat input into a welded material, its fragmentation and plastic flow around the welding tool, which depend on the ratio of tool rotation speed and tool travel speed. Mechanisms of joint formation are based on a combination of equally important processes of adhesive interaction in “tool-material” system and extrusion of metal into the region behind the welding tool. Combined with heat dissipation conditions and the configuration of the “tool-material” system, this leads to material extrusion from a welded joint and its decompaction. This results in formation of extended defects. Increasing in tool travel speed reduce the specific heat input, but in case of extended joints welding an amount of heat released in joint increases because of specific heat removal conditions. As a result, the conditions of adhesion interaction and extrusion processes change, which leads either to the growth of existing defects or to the formation of new ones. Taking into account the complexity of mechanisms of structure formation in joint obtained by BFSW, an obtaining of defect-free joints implies a necessary usage of various nondestructive testing methods in combination with an adaptive control of technological parameters directly in course of a welding process.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1264 ◽  
Author(s):  
Yu Chen ◽  
Huaying Li ◽  
Xiaoyu Wang ◽  
Hua Ding ◽  
Fenghe Zhang

Both conventional friction stir welding (C-FSW) and stationary shoulder friction stir welding (S-FSW) were employed to join the Al-7075 butt-lap structure, then the microstructural evolution and mechanical characterization of all FSW joints were systematically studied. The C-FSW joint exhibited a rough surface with flashes and arc corrugations, while the surface of the S-FSW joint became smooth. Moreover, for the S-FSW joint, the shoulder-affected zone got eliminated and the material flow mode during FSW was changed owning to the application of stationary shoulder. Furthermore, in comparison to C-FSW, the lower welding heat input of S-FSW decreased the average grain size in the nugget zone and inhibited the coarsening of strengthening precipitates in the heat-affected zone, elevating the overall hardness for the S-FSW joint. In addition, the tensile strength of the S-FSW joint became higher compared to the C-FSW joint, and all the FSW joints failed inside the nugget zone attributing to the existence of hook defect. The sharp-angled hook defect deteriorated the plasticity of the C-FSW joint further, which was only 70% that of the S-FSW joint.


2018 ◽  
Vol 255 ◽  
pp. 596-604 ◽  
Author(s):  
Huijie Liu ◽  
Yanying Hu ◽  
Huan Wang ◽  
Shuaishuai Du ◽  
Dusan P. Sekulic

Author(s):  
Xun Liu ◽  
Sheng Zhao ◽  
Kai Chen ◽  
Jun Ni

In this study, the friction stir welding (FSW) of aluminum alloy 6061-T6511 to TRIP 780 steel is analyzed under various process conditions. Two FSW tools with different sizes are used. To understand the underlying joining mechanisms and material flow behavior, nano-computed tomography (nano-CT) is applied for a 3D visualization of material distribution in the weld. With insufficient heat input, steel fragments are generally scattered in the weld zone in large pieces. This is observed in a combined condition of big tool, small tool offset, and low rotating speed or a small tool with low rotating speed. Higher heat input improves the material flowability and generates a continuous strip of steel. The remaining steel fragments are much finer. When the volume fraction of steel involved in the stirring nugget is small, this steel strip can be in a flat shape near the bottom, which generally corresponds to a better joint quality and the joint would fracture in the base aluminum side. Otherwise, a hook structure is formed and reduces the joint strength. The joint would fail with a combined brittle behavior on the steel hook and a ductile behavior in the surrounding aluminum matrix.


Author(s):  
Max Hossfeld

AbstractThis paper reports on the possibility of performing Friction Stir Welding (FSW) without the usual immanent shoulder to enable FS processing to deep welding of narrow and labile structures and applications where backing is not possible. Requirements and prerequisites, advantages and limitations for Shoulderless Friction Stir Welding (SLFSW) are discussed and an industrial application of the joining technology is presented. For leaving the shoulder out, its central functions in FSW have to be transferred to the pin. The resulting tool design of SLFSW is comparably small and slim and so reduces contact area and effective lever and in turn forces and heat input during processing. SLFSW allows welding paths almost at the edge of components and enables a complete and gap-free joining while a deformation of overhanging structures can be avoided. Compared to standard FSW processes, force reductions of about 80–85 % and power reductions of about 75–80 % were found in this study for a 6.5 mm deep weld opening up additional potential for integration with other spindle processes like milling. The locally very limited process impact of SLFSW resulted in comparably low distortion with a part precision reached of +/− 0.05 mm.


2021 ◽  
Vol 887 ◽  
pp. 575-580
Author(s):  
V. Statsenko ◽  
A. Sukhorada ◽  
N. Mikhailova

Currently, the most promising high-tech and productive process is friction stir welding. An important element of this technology is the determination of the material temperature in the stir zone, which can be determined by calculation based on the amount of heat input introduced into the welding zone. To determine this value, experimental of the dependence of heat input on the tool rotation speed and welding speed were carried out. For this, a scheme of experiments has been selected in which the material to be welded (aluminum alloy AMg5) is modeled as an experimental tube with a diameter of 20 mm, and the tool (made of tool steel R6M5) is modeled as a working plate. On the designed and manufactured stand, studies of the dependence of the heat-liberation value for the speeds of rotation of the experimental tube 42-105 rad/s were carried out. In this case, due to the pressing force of the experimental tube and the working plate, a constant temperature of the place of friction was maintained. The obtained experimental data were used to calculate the heat-liberation value and heat power on each concentric ring 2 mm wide at the end of the working tool with a diameter of 20 mm, as well as the total heat power for different speeds of rotation and welding.When carrying out experiments on the bench, heat losses were determined by thermal conductivity along the rod on which the experimental tube is fixed, as well as from the working plate made of tool steel through the gasket onto the working table and by convection from the surface of the rotating experimental tube into the environment. The calculation results showed that each of these losses does not exceed 3-10%. These losses are taken into account in the heat supply calculations.


Sign in / Sign up

Export Citation Format

Share Document