heat liberation
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7164
Author(s):  
Ivan Gabrijel ◽  
Marija Jelčić Rukavina ◽  
Nina Štirmer

This paper presents the results of an experimental study aimed at determining the influence of wood fly ash (WFA) from three Croatian power plants on the properties of concrete. First, the chemical and physical properties of WFA’s were determined. It was found that these properties are highly influenced by combustion technology, the type and parts of wood used as fuel, and the local operating conditions. Subsequently, workability, heat of hydration, stiffness development, 28-day compressive strength, apparent porosity, and capillary absorption were determined on concrete mixes prepared with WFA as cement replacement from 5–45% by weight. Cement replacement up to 15% with the finest WFA accelerated hydration, stiffness development, and increased compressive strength of concrete up to 18%, while replacement with coarser WFA’s led to a decrease in compressive strength of up to 5% and had more gradual heat liberation. The dominant effect that could explain these findings is attributed to the filler and filling effect mechanisms. At the same time replacement content of up to 45% had very little effect on capillary absorption and could give concrete with sufficiently high compressive strength to be suitable for construction purposes.


2021 ◽  
Vol 887 ◽  
pp. 575-580
Author(s):  
V. Statsenko ◽  
A. Sukhorada ◽  
N. Mikhailova

Currently, the most promising high-tech and productive process is friction stir welding. An important element of this technology is the determination of the material temperature in the stir zone, which can be determined by calculation based on the amount of heat input introduced into the welding zone. To determine this value, experimental of the dependence of heat input on the tool rotation speed and welding speed were carried out. For this, a scheme of experiments has been selected in which the material to be welded (aluminum alloy AMg5) is modeled as an experimental tube with a diameter of 20 mm, and the tool (made of tool steel R6M5) is modeled as a working plate. On the designed and manufactured stand, studies of the dependence of the heat-liberation value for the speeds of rotation of the experimental tube 42-105 rad/s were carried out. In this case, due to the pressing force of the experimental tube and the working plate, a constant temperature of the place of friction was maintained. The obtained experimental data were used to calculate the heat-liberation value and heat power on each concentric ring 2 mm wide at the end of the working tool with a diameter of 20 mm, as well as the total heat power for different speeds of rotation and welding.When carrying out experiments on the bench, heat losses were determined by thermal conductivity along the rod on which the experimental tube is fixed, as well as from the working plate made of tool steel through the gasket onto the working table and by convection from the surface of the rotating experimental tube into the environment. The calculation results showed that each of these losses does not exceed 3-10%. These losses are taken into account in the heat supply calculations.


2021 ◽  
Vol 72 (1) ◽  
pp. 53-65
Author(s):  
Anandavelu Kothandapany ◽  
Viswanath Krishnan

Performance, emission and combustion studies were carried out on the ceramic coated diesel engine (YSZ) fed with biodiesel obtained from the oil derived from the mango seeds (MSBD) and MSBD blended with turpentine oil (MSBTO). The performance study showed that the MSBD and MSBTO blends showed 3.6% and 7.1% more BSFC value compared to that of DF in ceramic coated engine due to higher density and viscosity. The maximum brake thermal efficiency was observed 28% for DF in coated engine compared to other fuels due to less fuel consumption of DF because of lower density. The emission characteristics displayed that the MSBTO fuel showed 12%, 15.2% and 29.1% reduction in the smoke density, NOx and CO respectively compared to that of DF in coated engine. However, the MSBD and MSBTO showed 17 and 21% more release of UBHC at full conditions compared to that of DF in ceramic coated engine due to lesser calorific values of MSBD and MSBTO compared to the calorific value of DF. Combustion study revealed that the MSBD and MSBTO displayed less cylinder pressure compared to that of DF in coated engine and the MSBTO fuel showed the 5.3% decrease in the cylinder pressure compared to that of DF in coated engine owing to less heat liberation and lower cetane value. HRR followed the similar trend of variation of cylinder pressure and the MSBTO displayed 7.4% lower HRR compared to that of DF in coated engine.


2019 ◽  
Vol 8 (3) ◽  
pp. 3007-3014

The aim of researches conducted in thermal protection systems in aeronautics and astronautics field of engineering is to generally defend the craft from high heat loads during operation while operating at hypersonic regimes in air and space. The motive of the following composition is to draft a review analysis on ablative heating materials as thermal protective equipment on reusable planetary/atmospheric re-entry vehicles such as a space shuttle, an inter-continental ballistic missile, or a hypersonic cruise missile. The heat liberation can cause much damage to the aircraft/spacecraft whilst operation which is generally beyond repair. It is therefore of utmost importance to research multiple strategy to reduce the effect of shockwaves damage to spacecraft/aircraft materials. We shall initiate the analysis by mentioning some re-usable tile thermal protection system types such as high temperature reusable surface insulation tiles (H.R.S.I), fibrous refectory composite insulation tiles (F.R.C.I), low temperature reusable surface insulation tiles (L.R.S.I) and gradually move on to ablative thermal protection systems with the advent of reinforced carboncarbon’s application in astronautics and aeronautics respectively.


2018 ◽  
Vol 170 ◽  
pp. 03022 ◽  
Author(s):  
M-B. Kodzoev ◽  
S. Isachenko ◽  
S. Kosarev ◽  
A. Basova ◽  
A. Skvortzov ◽  
...  

Gypsum-based binder modified by clay has properties close to the gypsum binder and can be used as plaster formulations or mortars. There are several reasons and chief among them is the lack of scientific based theory of formation and hardening properties of gypsum-based binder modified by clay without additives and that modified by additives. One of the classic ways of studying the mechanism of hydration of gypsum binders is the analysis of the heat liberation: hydration heat of the binder. With the thermos method of determining the heat liberation the ambient temperature is constant and the temperature of the sample which was at the beginning of the experiment changes as a result of the released heat of hydration of the gypsum; heat exchange between sample and the environment. Heat transfer is minimized through the use of thermos technology and effective insulation. The article presents the results of studying the dynamics of heat liberation during hydration of gypsum-based binder modified by clay without additives, with addition of superplasticizer and with the addition of setting retarder. Results in all cases are satisfactory. The highest degree of hydration evaluated by kinetics of heat liberation from a binder is with the addition of the superplasticizer. Application of setting retarder somewhat reduces the maximum degree of hydration and increases the hydration time. The degree of hydration of the binder with the addition of C3 additive and retarder is observed to be higher than that of gypsum-based binder modified by clay without additives. The studies confirm the possibility of using gypsum-based binder modified by clay in the composition of dry plaster mixtures for interior decoration works in premises.


2016 ◽  
Vol 871 ◽  
pp. 9-15 ◽  
Author(s):  
Yury Barabanshchikov ◽  
Tatiana Belkina ◽  
Anna Muratova ◽  
Andrii Bieliatynskyi

The article deals with heat liberation of barium cements, which influences the crack formation in mass concrete structures. The results of heat release and physical testing of barium cements with a different content of BaO are presented in this paper. The strength of cement and its setting time will decrease significantly, if the content of BaO in clinker is high (about 47%). This cement is characterized by a low water requirement and heat liberation. Properties of cement with a low content of barium oxide (5.5%) are close to the properties of the standard Portland cement. In this case heat liberation is low in the initial period of hardening, but at the later stage it exceeds the exotherm of a reference sample. A small amount of BaO in cement clinker reduces the exothermic effect and increases the thermal crack resistance of concrete.


2015 ◽  
Vol 35 (8) ◽  
pp. 631-634 ◽  
Author(s):  
A. V. Sidorkin ◽  
A. A. Malikov

Sign in / Sign up

Export Citation Format

Share Document