Optimization of the Cryogenic Treatment Process for En 52 Valve Steel Using the Grey-Taguchi Method

2010 ◽  
Vol 25 (8) ◽  
pp. 842-850 ◽  
Author(s):  
M. Arockia Jaswin ◽  
D. Mohan Lal
2008 ◽  
Vol 3 (2) ◽  
pp. 63-69
Author(s):  
M. Sivapragash ◽  
◽  
V. Sateeshkumar ◽  
P.R. Lakshminarayanan ◽  
R. Karthikeyan ◽  
...  

2012 ◽  
Vol 217-219 ◽  
pp. 2183-2186
Author(s):  
Chao Wei Tang ◽  
Li Chang Chuang ◽  
Hong Tsu Young ◽  
Mike Yang ◽  
Hsueh Chuan Liao

The robust design of chemical etching parameters is dealing with the optimization of the through-silicon via (TSV) roundness error and TSV lateral etching depth in the etching of silicon for laser drilled TSVs. The considered wet chemical etching parameters comprise the HNO3 molarity, HF molarity, and etching time. Grey-Taguchi method is combining the orthogonal array design of experiments with Grey relational analysis (GRA), which enables the determination of the optimal combination of wet chemical etching parameters for multiple process responses. The concept of Grey relational analysis is to find a Grey relational grade, which can be used for the optimization conversion from a multiple objective case to a single objective case. Also, GRG is used to investigate the parameter effects to the overall quality targets.


2010 ◽  
Vol 443 ◽  
pp. 63-68 ◽  
Author(s):  
Khairur Rijal Jamaludin ◽  
Norhamidi Muhamad ◽  
Mohd Nizam Ab. Rahman ◽  
Sufizar Ahmad ◽  
Mohd Halim Irwan Ibrahim ◽  
...  

The Grey-Taguchi method was adopted in this study to optimize the injection molding parameters for the MIM green compacts with multiple quality performance. A Grey relational grade obtained from the Grey relational analysis is used as the quality performance in the Taguchi method. Then, the optimum injection molding parameters are determined using the parameter design proposed by the Taguchi method. The result concluded that the mold temperature (D) is very significant, by the fact that the ANOVA shows its contribution to excellent surface appearance as well as strong and dense green compacts is 38.82%.


2020 ◽  
Vol 2 (6) ◽  
Author(s):  
Kyriaki-Evangelia Aslani ◽  
Konstantinos Kitsakis ◽  
John D. Kechagias ◽  
Nikolaos M. Vaxevanidis ◽  
Dimitrios E. Manolakos

Sign in / Sign up

Export Citation Format

Share Document