Wavelet scale analysisof bivariate time series ii:statistical properties for linear processes

2000 ◽  
Vol 13 (1) ◽  
pp. 37-56 ◽  
Author(s):  
A. Serroukh ◽  
A. T. Walden
2020 ◽  
Vol 5 (1) ◽  
pp. 374
Author(s):  
Pauline Jin Wee Mah ◽  
Nur Nadhirah Nanyan

The main purpose of this study is to compare the performances of univariate and bivariate models on four time series variables of the crude palm oil industry in Peninsular Malaysia. The monthly data for the four variables, which are the crude palm oil production, price, import and export, were obtained from Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Council (MPOC). In the first part of this study, univariate time series models, namely, the autoregressive integrated moving average (ARIMA), fractionally integrated autoregressive moving average (ARFIMA) and autoregressive autoregressive (ARAR) algorithm were used for modelling and forecasting purposes. Subsequently, the dependence between any two of the four variables were checked using the residuals’ sample cross correlation functions before modelling the bivariate time series. In order to model the bivariate time series and make prediction, the transfer function models were used. The forecast accuracy criteria used to evaluate the performances of the models were the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results of the univariate time series showed that the best model for predicting the production was ARIMA  while the ARAR algorithm were the best forecast models for predicting both the import and export of crude palm oil. However, ARIMA  appeared to be the best forecast model for price based on the MAE and MAPE values while ARFIMA  emerged the best model based on the RMSE value.  When considering bivariate time series models, the production was dependent on import while the export was dependent on either price or import. The results showed that the bivariate models had better performance compared to the univariate models for production and export of crude palm oil based on the forecast accuracy criteria used.


2021 ◽  
pp. 255-270
Author(s):  
James Davidson

This chapter reviews some important ideas from time series analysis. The concepts of stationarity, independence, and exchangeability are defined and illustrated with examples. The Poisson process is examined in detail and then the class of linear processes, noting the implications of the Wold decomposition. The final section studies the random walk and the reflection principle.


2002 ◽  
Vol 18 (2) ◽  
pp. 469-490 ◽  
Author(s):  
Joon Y. Park

This paper establishes an invariance principle applicable for the asymptotic analysis of sieve bootstrap in time series. The sieve bootstrap is based on the approximation of a linear process by a finite autoregressive process of order increasing with the sample size, and resampling from the approximated autoregression. In this context, we prove an invariance principle for the bootstrap samples obtained from the approximated autoregressive process. It is of the strong form and holds almost surely for all sample realizations. Our development relies upon the strong approximation and the Beveridge–Nelson representation of linear processes. For illustrative purposes, we apply our results and show the asymptotic validity of the sieve bootstrap for Dickey–Fuller unit root tests for the model driven by a general linear process with independent and identically distributed innovations. We thus provide a theoretical justification on the use of the bootstrap Dickey–Fuller tests for general unit root models, in place of the testing procedures by Said and Dickey and by Phillips.


2010 ◽  
Vol 42 (1) ◽  
pp. 137-157 ◽  
Author(s):  
Wei Biao Wu ◽  
Yinxiao Huang ◽  
Wei Zheng

For a time series, a plot of sample covariances is a popular way to assess its dependence properties. In this paper we give a systematic characterization of the asymptotic behavior of sample covariances of long-memory linear processes. Central and noncentral limit theorems are obtained for sample covariances with bounded as well as unbounded lags. It is shown that the limiting distribution depends in a very interesting way on the strength of dependence, the heavy-tailedness of the innovations, and the magnitude of the lags.


Sign in / Sign up

Export Citation Format

Share Document