Optical Precision Measurements Applied in the Analysis of the Wear Process of Reciprocating Sliding Friction Pair

2013 ◽  
Vol 146 (1) ◽  
pp. 59-66 ◽  
Author(s):  
L. Z. Shen ◽  
Y. J. Fan ◽  
T. Liang
2015 ◽  
Vol 220-221 ◽  
pp. 361-366
Author(s):  
Guntis Springis ◽  
Janis Rudzitis ◽  
Anita Avišāne ◽  
Maris Kumermanis ◽  
Jevgenijs Semjonovs ◽  
...  

A number of different mechanisms and devices may involve sliding-friction surfaces. The issues of service life and its prediction for the details of such surfaces have always been of particular importance. The article determines the most suitable wear calculation model that allows considering the set of parameters necessary for calculating slide-friction pair. The offered model is based on the application of the theories of several branches of sciences. Since the wear process is variable and many-sided, it is influenced by numerous different parameters, for example, surface geometry (roughness, waviness, form deviation, etc.), physical and mechanical conditions of the upper layer, material components, wear regime, wear temperature, etc.


2014 ◽  
Vol 604 ◽  
pp. 59-62 ◽  
Author(s):  
Oskars Linins ◽  
Armands Leitans ◽  
Guntis Springis ◽  
Janis Rudzitis

The problem of evaluating the life period of different mechanisms is of great importance nowadays. This could be explained by the fact that the wear process is very complex and very many factors take place simultaneously. During the history a variety of theories that offered different methods of wear calculation models were developed. However still there is no exact wear calculation model that could be applied to all cases of wear processes. The offered method is dealing with the calculation of rough surface peaks that make the contact between two surfaces. Taking into account the number of these peaks and applying fatigue wear model based on 3D surface micro-topography, assessing the materials physical and mechanical characteristic quantities and considering definite service conditions of sliding friction pair it is possible to make the wear calculation of friction pair under definite working conditions.


2014 ◽  
Vol 51 (2) ◽  
pp. 41-54 ◽  
Author(s):  
G. Springis ◽  
J. Rudzitis ◽  
A. Avisane ◽  
A. Leitans

Abstract One of the principal objectives of modern production process is the improvement of quality level; this means also guaranteeing the required service life of different products and increase in their wear resistance. To perform this task, prediction of service life of fitted components is of crucial value, since with the development of production technologies and measuring devices it is possible to determine with ever increasing precision the data to be used also in analytical calculations. Having studied the prediction theories of wear process that have been developed in the course of time and can be classified into definite groups one can state that each of them has shortcomings that might strongly impair the results thus making unnecessary theoretical calculations. The proposed model for wear calculation is based on the application of theories from several branches of science to the description of 3D surface micro-topography, assessing the material’s physical and mechanical characteristics, substantiating the regularities in creation of the material particles separated during the wear process and taking into consideration definite service conditions of fittings.


2013 ◽  
Vol 278-280 ◽  
pp. 414-417 ◽  
Author(s):  
Geng Pei Zhang ◽  
Xiao Jun Liu ◽  
Wen Long Lu

Running-in is an important and inevitable wear process for machine system, and it plays an indispensable role in extending service life and improving operating performance. Surface topography appears as a significant feature of friction pairs. Therefore, study on modification of surface topography in running-in is crucial to control surface quality and then achieve improvement of machine system. In this paper, to understand the evolution of surface topography in running-in process, steel dry sliding running-in experiments were conducted, and surface topographies in running-in were evaluated with the areal surface evaluation parameters. The results reveal that surface topography evaluation could provide valuable information about wear status of steel running-in process of dry sliding friction, amplitude parameters, area and volume parameters, and hybrid parameters play different and important roles in characterization of surface topography modification in running-in.


2019 ◽  
Vol 11 (1) ◽  
pp. 56-61
Author(s):  
Wei Yuan ◽  
Shengkai Mei ◽  
Song Li ◽  
Zhiwen Wang ◽  
Jie Yu ◽  
...  

Background: Grooves may inevitably occur on the surface of the friction pair caused by severe wear or residual stress, which will play an important role on the reliability of machine parts during operation. Objective: The effect of the micro-grooves perpendicular to sliding direction on the wear performance of the friction pairs should be studied. Method: Micro-grooves can be machined on discs of friction pairs using electrical discharge machining. On-line visual ferrograph method was used to monitor the wear process to research the wear rate changing characteristic. Profilemeter and metallurgical microscope were used to observe the wear scars. Results: Comparing to the non-groove test, i) in one-groove test, wear volume and rate were approximate the same, and the wear scar was smooth, ii) when the grooves more than 4, the test running-in stage will be obviously prolonged, particularly for the test with 8 grooves on the disc, the duration of running-in stage is 4 times than that without grooves on specimen, and the wear rate and volume increase significantly, and then decrease with fluctuation, iii) the abrasive wear can be avoid with the debris stagnating in the groove, however, fatigue wear will significantly emerge. Conclusion: Abrasive wear can be avoided and smooth running-in surfaces can be obtained with proper amount of initial radial micro-grooves.


2014 ◽  
Vol 613 ◽  
pp. 213-218
Author(s):  
Wei Wei ◽  
Jian Wei Yu ◽  
Tao You ◽  
Xiao Fen Yu ◽  
Yong Hong Wang

A real-time temperature measurement system was designed for end-face sliding friction pairs with an infrared (IR) probe and IR thermography installed on it. The approximate temperature of contact surface was measured by the probe while non-contact surface’s temperature distribution was determined with the IR thermography. Two experiments with constant load but varied rotational speeds were carried out, and a preliminary study was made to analyze the variation of temperature in the friction process. Furthermore, the probe data was used as thermal load to calculate the temperature field by the FEM model and the result was verified using IR images. The experimental results showed that the infrared measurement system can detect and record the interface-temperature variation accurately. The probe data showed a good dynamic performance with the variation of friction coefficient. In addition, the calculated temperature field showed good accordance with the IR thermography data.


Tribologia ◽  
2019 ◽  
Vol 285 (3) ◽  
pp. 97-106
Author(s):  
Katarzyna PIOTROWSKA ◽  
Monika MADEJ ◽  
Dariusz OZIMINA

The aim of this study was to evaluate the wear and tear of titanium biomaterials used for hip endoprosthesis. The test materials were samples of titanium and its alloys: Ti grade 4, Ti6Al7Nb and Ti13Nb13Zr. Model tribological tests were carried out in reciprocal motion under conditions of technically dry friction, friction with lubrication provided by an artificial blood solution and Ringer's solution. A 6 mm in diameter Al2O3 ball was used as a counter-sample in the friction pairs. After tribological tests, traces of wear were inspected using scanning electron microscopy. A confocal microscope with interferometric mode was used to evaluate the wear of the surface of samples and counter-samples. The lowest friction coefficients among all the material associations were obtained for the Ti13Nb13Zr-Al2O3 alloy. SEM analysis has shown that as a result of the wear process, numerous scratches and grooves were generated. They were created as a result of loose products of wear moving around in the friction area. For all tested materials, a pile-up of the wear edges was observed, which indicates an abrasive wear mechanism. During the friction tests of the tested material associations, the titanium disc proved to be the most wearing material. For Ti6Al7Nb and Ti13Nb13Zr alloys, comparable wear was recorded regardless of the test conditions (TDF, AB, RS). The analysis of the obtained tribological results showed that the material association for which the lowest wear of friction pair (sample and countersample) recorded was Ti6Al7Nb-Al2O3.


2021 ◽  
Vol 351 ◽  
pp. 01006
Author(s):  
Maciej Matuszewski ◽  
Małgorzata Słomion ◽  
Adam Mazurkiewicz ◽  
Andrzej Wojciechowski

In this study, the influence of the geometrical surface structure shape on wear process of friction pairs elements with conformal contact was analyzed. Characteristics of the machine elements surface layer were described with special distinction of importance of the surface structure directivity and isotropy in terms of the surface layer transformation. This work presents the results of experimental tests in which the following input factors were used: specimen and counter-specimen ridge angle of intersection (0°; 30°; 45°; 60°; 90°) and specimen and counter-specimen clamp (1.0; 1.5; 2.0 MPa). The changes of the surface layer were recorded as a function of a specimen mass changes. Based on the conducted research, it was found that the ridge angle of intersection on the specimen and counter-specimen has a significant impact on the wear process intensity. The changes were uttermost for 0° angle and slightest for 9°. It was also found that the observed changes have a larger gradient for higher specimen load values. Thus, the significance of the geometrical surface structure directivity influence on the friction pair elements wear process intensity was confirmed.


2021 ◽  
Author(s):  
Jian Xu ◽  
Zhen Yang ◽  
Qiang Li ◽  
Zhongming Li

Abstract The temperature rise in the contact area of the sliding friction pair is an important factor that causes the sliding friction pairs to adhere and affect the movement, and the temperature of the sliding friction pair is affected by many factors. The influential trend of these factors on the temperature is analyzed by using the finite element software, the bolt and guide rail of a Gatling weapon is simulated under the condition of considering the surface roughness and bionics. The results demonstrate that the stress of the result decreases a lot when the bolt is bionic, which is 41.1% lower than the normal condition. However, the displacement increases slightly, only 0.0016mm. Bionics has more benefits than roughness in reducing stress. In the thermal situation analysis of the 10000 firing rate, the combination which comes from the general guide rail and the bionics bolt is 168.130, but the combination which comes from the general guide rail and general bolt is 86.2580. This also explains why modern Gatling weapons do not use the bionics structure, because, with the friction, its temperature is high. For continuous firing weapons, too high a temperature is a problem. If the firing rate is lower, a bionics structure can be used.


Sign in / Sign up

Export Citation Format

Share Document