scholarly journals Evaluation of Bolt and Guide Rail Considering Surface Roughness and Bionics in Reciprocating Motion

Author(s):  
Jian Xu ◽  
Zhen Yang ◽  
Qiang Li ◽  
Zhongming Li

Abstract The temperature rise in the contact area of the sliding friction pair is an important factor that causes the sliding friction pairs to adhere and affect the movement, and the temperature of the sliding friction pair is affected by many factors. The influential trend of these factors on the temperature is analyzed by using the finite element software, the bolt and guide rail of a Gatling weapon is simulated under the condition of considering the surface roughness and bionics. The results demonstrate that the stress of the result decreases a lot when the bolt is bionic, which is 41.1% lower than the normal condition. However, the displacement increases slightly, only 0.0016mm. Bionics has more benefits than roughness in reducing stress. In the thermal situation analysis of the 10000 firing rate, the combination which comes from the general guide rail and the bionics bolt is 168.130, but the combination which comes from the general guide rail and general bolt is 86.2580. This also explains why modern Gatling weapons do not use the bionics structure, because, with the friction, its temperature is high. For continuous firing weapons, too high a temperature is a problem. If the firing rate is lower, a bionics structure can be used.

2020 ◽  
pp. 1-18
Author(s):  
Ding Cong ◽  
Guodong Sun ◽  
Zhen-yu Zhou ◽  
Zhong-yu Piao

Abstract To investigate the influence of surface roughnesses on the dynamic characteristics of AISI 5120 steel in sliding friction process, a suite of running-in experiments are performed on a pin-on-disk tribometer. The running-in attractor is used to analyze the high-dimensional features of a friction system under different surface roughnesses. The experimental results show that the roughnesses of different original surfaces evolve to the same value in stable wear stage. The pin-on-disk friction system has a chaotic nature and exists a running-in attractor. The original surface of a disk of Ra=0.953 µm is the most conducive to shorten the running-in duration, reduce the friction coefficient value, and improve the stability of the friction system. This roughness value is termed as the optimum surface roughness. It is an ideal working surface for the friction pair in the running-in design.


2006 ◽  
Vol 34 (4) ◽  
pp. 237-255 ◽  
Author(s):  
M. Kuwajima ◽  
M. Koishi ◽  
J. Sugimura

Abstract This paper describes experimental and analytical studies of the dependence of tire friction on the surface roughness of pavement. Abrasive papers were adopted as representative of the microscopic surface roughness of pavement surfaces. The rolling∕sliding friction of tire tread rubber against these abrasive papers were measured at low slip velocities. Experimental results indicated that rolling∕sliding frictional characteristics depended on the surface roughness. In order to examine the interfacial phenomena between rubber and the abrasive papers, real contact length, partial slip, and apparent friction coefficient under vertical load and tangential force were analyzed with two-dimensional explicit finite element analysis in which slip-velocity-dependent frictional coefficients were considered. Finite element method results indicated that the sum of real contact area and local partial slip were larger for finer surfaces under the same normal and tangential forces. In addition, the velocity-dependent friction enhanced local slip, where the dependence of local slip on surface roughness was pronounced. It proved that rolling∕sliding friction at low slip ratio was affected by local frictional behavior at microslip regions at asperity contacts.


2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


2017 ◽  
Vol 739 ◽  
pp. 18-22
Author(s):  
Laura Elbourne-Binns ◽  
Juan Carlos Baena ◽  
Ling Yin ◽  
Zhong Xiao Peng

An experimental investigation was performed to study the wear of a promising dental ceramic, i.e., machinable lithium disilicate glass ceramic, under lubrication conditions, in particular, to examine effects of the surface finish and applied load on wear. Our previous work has shown that a fine finish in a dry condition did not necessarily translate to the lowest wear volume due to changes in the dominant wear mechanisms. This study tested the ceramic specimens with four average surface roughness values of Sa = 143 nm, 217 nm, 353 nm, and 692 nm on a reciprocating sliding friction rig against alumina balls with two applied forces of 5 N and 25 N in a bath of distilled water. Comparing with the results obtained in the dry conditions, this study shows that surface roughness of approximately 200 nm may be suitable for surface preparation of crowns made from the material in the wet and dry wear conditions in the oral environment.


2018 ◽  
Vol 70 (3) ◽  
pp. 463-473 ◽  
Author(s):  
Fangwei Xie ◽  
Jie Zhu ◽  
Jianzhong Cui ◽  
Xudong Zheng ◽  
Xinjian Guo ◽  
...  

Purpose The purpose of this paper is to study the dynamic transmission of the oil film in soft start process of hydro-viscous drive (HVD) between the friction pairs with consideration of surface roughness, and obtain the distribution law of temperature, velocity, pressure, shear stress and viscous torque of the oil film. Design/methodology/approach The revised soft-start models of HVD were derived and calculated, including average Reynolds equation, asperity contact model, load force model and total torque model. Meanwhile, a 2D model of the oil film between friction pair was built and solved numerically using computational fluid dynamics (CFD) technique in FLUENT. Findings The results show that the maximum temperature gradually reduces from the intermediate range (z = 0.5 h) to the inner side of the friction pair along the direction of oil film thickness. As the soft-start process continues, pressure gradient along the direction of the oil film thickness gradually changes to zero. In addition, tangential velocity increases and yet radial velocity decreases with the increase of the radius. Originality/value In this paper, it was found that the viscous torque calculated by the numerical method is smaller than that by the CFD model, but their overall trend is almost the same. This also demonstrates the effectiveness of the numerical simulation.


2019 ◽  
Vol 803 ◽  
pp. 167-171
Author(s):  
Aphinan Phukaoluan ◽  
Anak Khantachawana ◽  
Pongpan Kaewtatip ◽  
Surachai Dechkunakorn

The tribological behavior of Ti49.4Ni50.6, Ti49Ni46Cu5 and Ti50Ni47Co3 (at%) alloy in dry and wet conditions was studied. The alloy was prepared in a Vacuum Arc Re-melting (VAR), homogenized at 800°C for 3600 s and quenched in water. The phase transformation temperatures were measured by differential scanning calorimetry. Before a tribology test, it is necessary to determine surface roughness, because high surface roughness affects friction. The hardness behavior, based on the load over residual indent area, was determined by a Vickers hardness tester. The sliding friction tests were performed using a ball-on-disk tribometer in dry condition at room temperature and wet condition in artificial saliva (pH 5.35) at 37°C (Oral temperature). The results showed that transformation temperature (Af) lowered oral temperature (37°C), this was mainly attributed to the superelastic properties that can be taken into orthodontic applications. The studies showed significant influences in dry condition of coefficient of friction. Caused by the force between the ball and the disk, contact pressure of surface area effect in wear occurred. The debris could not be removed from the surface area tested. TiNiCu and TiNiCo generated significantly lower average coefficient of friction when tested under dry condition, which may have been due to the addition of Cu and Co. Wet condition decreased coefficient of friction more than dry condition, owing to the lubricating effects of artificial saliva.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1862 ◽  
Author(s):  
Luanxia Chen ◽  
Zhanqiang Liu ◽  
Bing Wang ◽  
Qinghua Song ◽  
Yi Wan ◽  
...  

Eutectic aluminum-silicon alloys present high frictional coefficient and a high wear rate due to the low hardness under sliding friction conditions. In this paper, the eutectic aluminum-silicon alloy was textured firstly by micro-milling operations. Then, the micro-textured specimen was subjected to anodizing to fabricate alumina films. The surface topography, surface roughness, and bearing area ratio of micro-textured and anodizing micro-textured specimens were measured and characterized. For the anodizing micro-textured specimens, the surface roughness and superficial hardness increase compared with those for micro-textured ones. Tribological tests indicate that anodizing micro-textured samples present lower friction coefficient of 0.37 than that of flat samples of 0.43 under dry sliding conditions. However, they exhibit higher friction coefficient at 0.16 than that of flat samples of 0.13 under oil-lubricated conditions. The difference between the friction coefficient of anodizing micro-textured and flat samples under dry and oil-lubricated conditions is ascribed to the influence mechanism of surface roughness, bearing area ratio curves, and its relative parameters on the tribological performance of testing samples. The dry sliding friction coefficient has a positive correlation with bearing area ratio curves, while they present negative correlation with bearing area ratio curves under oil-lubricated conditions. The synergy method treated with micro-milling and anodizing provides an effective approach to enhance the dry sliding friction property of eutectic aluminum-silicon alloys.


2012 ◽  
Vol 479-481 ◽  
pp. 202-206
Author(s):  
Wan Hua Nong ◽  
Fei Gao ◽  
Rong Fu ◽  
Xiao Ming Han

The distribution of temperature on the rubbing surface is an important factor influencing the lifetime of a brake disc. With a copper-base sintered brake pad and a forge steel disc, up-to-brake experiments have been conducted on a full-scale test bench at a highest speed of 200 Km/h and a maximum braking force of 22.5 KN. The temperature distributions on brake disc surface have been acquired by an infrared thermal camera, and the contact pressure on the contact surface of the friction pair has been calculated by the finite element software ABAQUS. The results show that the area and thermal gradient of the hot bands increase with the increase of braking speed and braking force. The hot bands occur in priority at the radial location of r=200 mm and r=300 mm, and move radially in the braking process. The finite element modelling calculation indicates that the distribution of the contact pressure on the disc surface in radial direction is in a "U"-shape. The maximum contact pressure occur at the radial locations of r=200 mm and r=300 mm, and the minimum contact pressure occur in the vicinity of the mean radius of the disc. The conformity of contact pressure distributions with the practical temperature evolutions indicates that the non-uniform distribution of the contact pressure is the factor resulting in the appearance of hot bands on the disc surface.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 472
Author(s):  
Peijie Liu ◽  
Yanming Quan ◽  
Junjie Wan ◽  
Lang Yu

To guarantee the smooth operation of trains, rail grinding and wheel turning are necessary practices to remove surface defects. Surface integrity of machined wheel/rail materials is significant to affect their tribological performance. In this paper, firstly, the wheel specimens were turned by a CNC lathe and the rail specimens were ground by a cylindrical grinding machine with various machining parameters. Then, the wear and damage behavior of the machined wheel/rail discs was systematically investigated via a twin-disc wear testing apparatus under dry rolling-sliding condition. The experimental results show that the surface hardness of rail discs after machining is slightly higher than that of wheel discs, while the surface roughness and plastic deformation layer of wheel discs are much larger than those of rail discs. The surface hardness increase degree of rail discs and their thickness of plastic deformation layer are greater than those of wheel discs after the rolling-sliding test. The wear loss of wheel discs is much larger than that of rail discs. Surface roughness, hardness and plastic deformation layer of wheel/rail discs after machining exert a comprehensive effect on the wear behavior, and friction pair with appropriate original surface hardness and roughness generates the smallest amount of wear loss.


Sign in / Sign up

Export Citation Format

Share Document