Fractal analysis of muddy submarine channel slope instability from sub-bottom profile images

Author(s):  
Cunyong Zhang
2018 ◽  
Vol 30 (4) ◽  
pp. 245-263
Author(s):  
Young-Hwan G. Kim ◽  
Jusun Woo ◽  
Tae-Yoon S. Park ◽  
Ji-Hoon Kihm ◽  
Jong Ik Lee ◽  
...  

AbstractThe submarine channel-fill system of the Cambrian Spurs Formation exhibits unique metre-scale cycles of breccia and diamictite. The studied sections, Eureka Spurs, are located at the Mariner Glacier in the central-eastern part of northern Victoria Land, Antarctica. A facies analysis of the channel-fill deposit has led to the recognition of four main lithofacies: breccia, diamictite, thin-bedded sandstone and mudstone. The channel-fill deposit consists of two architectural elements: hollow-fill (HF) and sheet-like (SL) elements. The SL has wide convex-up geometry and consists solely of a very thick bed of diamictite, and is interpreted as a submarine channel lobe. The HF has a concave-up erosional base and flat upper surface. The HF consists of nine cyclic alternations of underlying breccia (cohesionless debris flow) and overlying diamictite (cohesive debris flow). The deposition of breccia is interpreted to have been controlled by repeated allogenic processes such as earthquakes. In contrast, the abrupt vertical transition from breccia to diamictite in each cycle is interpreted to have resulted from an autogenic, slope instability-related process. The interaction of the allogenic and autogenic factors recorded in the metre-scale unique cyclic deposits provides new criteria to interpret cycles of submarine debris flow.


2012 ◽  
Vol 256-259 ◽  
pp. 311-314
Author(s):  
Guang Ming Li ◽  
Chun Yuan Liu ◽  
Pei Chen

It is well known that the slope stability analysis is the core of the slope engineering study .The key of the study slope safety stability is optimize the slop coefficient。And the reasonable coefficient decides the design of slope type structure.This paper used the simplified Bishop method which according to the limit equilibrium theory as the foundation and the finite element numerical simulation to solve the south-to-north water transfer engineering slope instability problem.So it can provide the theory basis and design opinion for the slop construction engineering in the future.


2000 ◽  
Vol 39 (02) ◽  
pp. 37-42 ◽  
Author(s):  
P. Hartikainen ◽  
J. T. Kuikka

Summary Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and singlephoton emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (= coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17 ± 0.05 (mean ± SD) for the left hemisphere and 1.15 ± 0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04 ± 0.03 than in healthy controls. Conclusion: Within the limits of spatial resolution of SPECT, the heterogeneity of brain blood flow is well characterized by a fractal dimension. Fractal analysis may help brain scientists to assess age-, sex- and laterality-related anatomic and physiological changes of brain blood flow and possibly to improve precision of diagnostic information available for patient care.


2014 ◽  
Vol 2 (1) ◽  
pp. 149-162
Author(s):  
Melvin de Castro ◽  
◽  
Tonette Villanueva ◽  
Grace Arcamo ◽  
Rayna Lynn de Castro ◽  
...  

TAPPI Journal ◽  
2013 ◽  
Vol 12 (3) ◽  
pp. 17-23 ◽  
Author(s):  
WANHEE IM ◽  
HAK LAE LEE ◽  
HYE JUNG YOUN ◽  
DONGIL SEO

Preflocculation of filler particles before their addition to pulp stock provides the most viable and practical solution to increase filler content while minimizing strength loss. The characteristics of filler flocs, such as floc size and structure, have a strong influence on preflocculation efficiency. The influence of flocculant systems on the structural characteristics of filler flocs was examined using a mass fractal analysis method. Mass fractal dimensions of filler flocs under high shear conditions were obtained using light diffraction spectroscopy for three different flocculants. A single polymer (C-PAM), a dual cationic polymer (p-DADMAC/C-PAM) and a C-PAM/micropolymer system were used as flocculants, and their effects on handsheet properties were investigated. The C-PAM/micropolymer system gave the greatest improvement in tensile index. The mass fractal analysis showed that this can be attributed to the formation of highly dense and spherical flocs by this flocculant. A cross-sectional analysis of the handsheets showed that filler flocs with more uniform size were formed when a C-PAM/micropolymer was used. The results suggest that a better understanding of the characteristics of preflocculated fillers and their influence on the properties of paper can be gained based on a fractal analysis.


2019 ◽  
pp. 103-110
Author(s):  
A.S. Kobets ◽  
◽  
V.I. Dyrda ◽  
Ye.V. Kalhankov ◽  
I.M. Tsanidi ◽  
...  

2011 ◽  
Vol 7 (3) ◽  
pp. 5-13
Author(s):  
Ya.V. Shevchuk ◽  

Sign in / Sign up

Export Citation Format

Share Document