Structure characterization of ground calcium carbonate flocs by fractal analysis and their effects on handsheet properties

TAPPI Journal ◽  
2013 ◽  
Vol 12 (3) ◽  
pp. 17-23 ◽  
Author(s):  
WANHEE IM ◽  
HAK LAE LEE ◽  
HYE JUNG YOUN ◽  
DONGIL SEO

Preflocculation of filler particles before their addition to pulp stock provides the most viable and practical solution to increase filler content while minimizing strength loss. The characteristics of filler flocs, such as floc size and structure, have a strong influence on preflocculation efficiency. The influence of flocculant systems on the structural characteristics of filler flocs was examined using a mass fractal analysis method. Mass fractal dimensions of filler flocs under high shear conditions were obtained using light diffraction spectroscopy for three different flocculants. A single polymer (C-PAM), a dual cationic polymer (p-DADMAC/C-PAM) and a C-PAM/micropolymer system were used as flocculants, and their effects on handsheet properties were investigated. The C-PAM/micropolymer system gave the greatest improvement in tensile index. The mass fractal analysis showed that this can be attributed to the formation of highly dense and spherical flocs by this flocculant. A cross-sectional analysis of the handsheets showed that filler flocs with more uniform size were formed when a C-PAM/micropolymer was used. The results suggest that a better understanding of the characteristics of preflocculated fillers and their influence on the properties of paper can be gained based on a fractal analysis.

2021 ◽  
Vol 13 (9) ◽  
pp. 1724
Author(s):  
Vojislav Mitić ◽  
Cristina Serpa ◽  
Ivana Ilić ◽  
Markus Mohr ◽  
Hans-Jörg Fecht

Materials science is highly significant in space program investigation, energy production and others. Therefore, designing, improving and predicting advanced material properties is a crucial necessity. The high temperature creep and corrosion resistance of Ni-based superalloys makes them important materials for turbine blades in aircraft engines and land-based power plants. The investment casting process of turbine blades is costly and time consuming, which makes process simulations a necessity. These simulations require fundamental models for the microstructure formation. In this paper, we present advanced analytical techniques in describing the microstructures obtained experimentally and analyzed on different sample’s cross-sectional images. The samples have been processed on board the International Space Station using the MSL-EML device based on electromagnetic levitation principles. We applied several aspects of fractal analysis and obtained important results regarding fractals and Hausdorff dimensions related to the surface and structural characteristics of CMSX-10 samples. Using scanning electron microscopy (SEM), Zeiss LEO 1550, we analyzed the microstructure of samples solidified in space and successfully performed the fractal reconstruction of the sample’s morphology. We extended the fractal analysis on the microscopic images based on samples solidified on earth and established new frontiers on the advanced structures prediction.


2003 ◽  
Vol 15 (8) ◽  
pp. 1931-1957 ◽  
Author(s):  
Peter Tiňo ◽  
Barbara Hammer

We have recently shown that when initialized with “small” weights, recurrent neural networks (RNNs) with standard sigmoid-type activation functions are inherently biased toward Markov models; even prior to any training, RNN dynamics can be readily used to extract finite memory machines (Hammer & Tiňo, 2002; Tiňo, Čerňanský, &Beňušková, 2002a, 2002b). Following Christiansen and Chater (1999), we refer to this phenomenon as the architectural bias of RNNs. In this article, we extend our work on the architectural bias in RNNs by performing a rigorous fractal analysis of recurrent activation patterns. We assume the network is driven by sequences obtained by traversing an underlying finite-state transition diagram&a scenario that has been frequently considered in the past, for example, when studying RNN-based learning and implementation of regular grammars and finite-state transducers. We obtain lower and upper bounds on various types of fractal dimensions, such as box counting and Hausdorff dimensions. It turns out that not only can the recurrent activations inside RNNs with small initial weights be explored to build Markovian predictive models, but also the activations form fractal clusters, the dimension of which can be bounded by the scaled entropy of the underlying driving source. The scaling factors are fixed and are given by the RNN parameters.


1990 ◽  
Vol 259 (4) ◽  
pp. H1086-H1096 ◽  
Author(s):  
J. M. Capasso ◽  
T. Palackal ◽  
G. Olivetti ◽  
P. Anversa

To determine if aging engenders alterations in the functional properties of the myocardium and ventricular remodeling, the hemodynamic performance and structural characteristics of the left ventricle of male Fischer 344 rats at 4, 12, 20, and 29 mo of age were studied by quantitative physiology and morphology. In vivo assessment of cardiac pump function showed no change up to 20 mo, whereas left ventricular end-diastolic pressure was increased at 29 mo. Moreover, peak rates of pressure rise and decay, stroke volume, ejection fraction, and cardiac output were depressed at the later age interval, demonstrating the presence of ventricular failure at this time. The measurements of chamber size and wall thickness showed that ventricular end-diastolic and end-systolic volumes progressively increased with age with the greatest change occurring at 20-29 mo. Aging was also accompanied by a marked augmentation in the volume fraction of fibrotic areas in the ventricular myocardium that was due to an increase in their number and cross-sectional area with time. These architectural rearrangements, in combination with the abnormalities in ventricular function, resulted in an elevation in the volume of wall stress throughout the cardiac cycle. Wall stress increased by 64, 44, and 50% from 4 to 12, 12 to 20, and 20 to 29 mo of age. In conclusion, aging leads to a continuous rise in wall stress that is not normalized by ventricular remodeling. These two independent processes appear to be responsible for the onset of heart failure in the senescent rat.


Author(s):  
Константин Макаренко ◽  
Konstantin Makarenko ◽  
Александр Никитин ◽  
Alexander Nikitin

It is proposed to use the methods of fractal analysis to determine the morphological characteristics of the structure of structural materials. The questions of fractal aggregation of particles in the process of crystallization of ductile iron are considered, an austenitic-graphite cell is used as an elementary particle. Based on the mesh method, images of the microstructure of ductile irons are analysed and conclusions are drawn about the similarity of the nature of the process of their crystallization and fractal aggregation of particles. Based on the calculated fractal dimensions, a theory is proposed to explain the features of the crystallization process of ductile irons.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bo Tao ◽  
Yuan Xiao ◽  
Hengyi Cao ◽  
Wenjing Zhang ◽  
Chengmin Yang ◽  
...  

Abstract Background The corpus callosum (CC) deficits have been well documented in chronic schizophrenia. However, the long-term impacts of antipsychotic monotherapies on callosal anatomy remain unclear. This cross-sectional study sought to explore micro- and macro-structural characteristics of the CC in never-treated patients and those with long-term mono-antipsychotic treatment. Methods The study included 23 clozapine-treated schizophrenia patients (CT-SCZ), 19 risperidone-treated schizophrenia patients (RT-SCZ), 23 never-treated schizophrenia patients (NT-SCZ), and 35 healthy controls (HCs). High resolution structural images and diffusion tensor imaging (DTI) data for each participant were obtained via a 3.0 T MR scanner. FreeSurfer was used to examine the volumes and fractional anisotropy (FA) values of the CC for each participant. Results There were significant deficits in the total and sub-regional CC volume and white matter integrity in NT-SCZ in comparison with healthy subjects. Compared with NT-SCZ, both CT-SCZ and RT-SCZ showed significantly increased FA values in the anterior CC region, while only RT-SCZ showed significantly increased volume in the mid-anterior CC region. Moreover, the volume of the mid-anterior CC region was significantly smaller in CT-SCZ compared to HCs. No correlations of clinical symptoms with callosal metrics were observed in schizophrenia patients. Conclusions Our findings provide insight into micro- and macro-structural characteristics of the CC in chronic schizophrenia patients with or without antipsychotics. These results suggest that the pathology itself is responsible for cerebral abnormalities in schizophrenia and that chronic exposure to antipsychotics may have an impact on white matter structure of schizophrenia patients, especially in those with risperidone treatment.


Author(s):  
Mykola Mykyjchuk ◽  
Volodymyr Markiv

The article dwells upon the peculiarities of radio signals concerning the use of remote-piloted vehicles. It is highlighted that it is important take into consideration the fractal analysis of remote-piloted vehicles based on diverse fractal dimensions. The significance of remote-piloted vehicle control system investigation based on radio signals is presented. Also it is highlighted that there are many hindrances during the remote-piloted vehicle flight and it is important to take them into consideration and develop methods in order to omit them. Also the vital role of remote-piloted vehicles in different spheres of life, for example, in environment research is depicted.


2012 ◽  
Vol 204-208 ◽  
pp. 1923-1928
Author(s):  
Bo Tan ◽  
Rui Hua Yang ◽  
Yan Ting Lai

The paper presents the fractal dimension formula of distribution of asphalt mixture aggregate diameter by the deducing mass fractal characteristics function. Taking AC-20 and SMA-20 as examples, selected 6 groups of representative grading curves within the grading envelope proposed by the present specification, and calculated their fractal dimensions. The asphalt mixture gradation has fractal dimension D (D∈(1,3)), and the fractal of continuous gradation is single while the fractal of gap-gradation shows multi-fractal with 4.75 as the dividing point. Fractal dimension of aggregate gradation of asphalt mixture reflect the structure characteristics of aggregate distribution, that is, finer is aggregate, bigger is the fractal dimension.


2000 ◽  
Vol 46 (155) ◽  
pp. 695-699 ◽  
Author(s):  
Roger H. Morin ◽  
Guillaume E. Descamps ◽  
L. DeWayne Cecil

AbstractThe acoustic televiewer is a geophysical logging instrument that is deployed in a water-filled borehole and operated while trolling. It generates a digital, magnetically oriented image of the borehole wall that is developed from the amplitudes and transit times of acoustic waves emitted from the tool and reflected at the water–wall interface. The transit-time data are also converted to radial distances, from which cross-sectional views of the borehole shape can be constructed. Because the televiewer is equipped with both a three-component magnetometer and a two-component inclinometer, the borehole’s trajectory in space is continuously recorded as well. This instrument is routinely used in mining and hydrogeologic applications, but in this investigation it was deployed in two boreholes drilled into Upper Fremont Glacier, Wyoming, U.S.A. The acoustic images recorded in this glacial setting are not as clear as those typically obtained in rocks, due to a lower reflection coefficient for water and ice than for water and rock. Results indicate that the depth and orientation of features intersecting the boreholes can be determined, but that interpreting their physical nature is problematic and requires corroborating information from inspection of cores. Nevertheless, these data can provide some insight into englacial structural characteristics. Additional information derived from the cross-sectional geometry of the borehole, as well as from its trajectory, may also be useful in studies concerned with stress patterns and deformation processes.


2005 ◽  
Vol 98 (3) ◽  
pp. 850-855 ◽  
Author(s):  
Joseph C. Anderson ◽  
Albert L. Babb ◽  
Michael P. Hlastala

We analyzed published measurements of the bronchial circulation and airway wall (Anderson JC, Bernard SL, Luchtel DL, Babb AL, and Hlastala MP. Respir Physiol Neurobiol 132: 329–339, 2002) and determined that the radial distribution of bronchial capillary cross-sectional area was fractal. We limited our analysis to bronchial capillaries, diameter ≤10 μm, that resided between the epithelial basement membrane and adventitia-alveolar boundary, the airway wall tissue. Thirteen different radial distributions of capillary-to-tissue area were constructed simply by changing the number of annuli (i.e., the annular size) used to form each distribution. For the 13 distributions created, these annuli ranged in size from to of the size of the airway wall area. Radial distributions were excluded from the fractal analysis if the sectioning procedure resulted in an annulus with a radial thickness less than the diameter of a capillary. To determine the fractal dimension for a given airway, the coefficient of variation (CV) for each distribution was calculated, and ln(CV) was plotted against the logarithm of the relative piece area. For airways with diameter >2.4 mm, this relationship was linear, which indicated the radial distribution of bronchial capillary cross-sectional area was fractal with an average fractal dimension of 1.27. The radial distribution of bronchial capillary cross-sectional area was not fractal around airways with diameter <1.5 mm. We speculated on how the fractal nature of this circulation impacts the distribution of bronchial blood flow and the efficiency of mass transport during health and disease. A fractal analysis can be used as a tool to quantify and summarize investigations of the bronchial circulation.


Sign in / Sign up

Export Citation Format

Share Document