Evaluation of pilot scale in-vitro and ex-situ hydrocarbon bioremediation potential of two novel indigenous strains of Bacillus vallismortis

2020 ◽  
Vol 24 (2-3) ◽  
pp. 190-203 ◽  
Author(s):  
Manisha Basumatary ◽  
Suman Das ◽  
Madhurjya Gogoi ◽  
Indukalpa Das ◽  
Dipika Charingia ◽  
...  
Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
Luciana Diniz Rola ◽  
Eveline dos Santos Zanetti ◽  
Maite del Collado ◽  
Ellen de Fátima Carvalho Peroni ◽  
José Maurício Barbanti Duarte

Summary In vitro production of embryos has gained prominence as a tool for use in wildlife conservation programmes in situ and ex situ. However, the development of this technique depends on steps that include ovarian stimulation, collection and oocyte maturation. The purpose of this study was to assess the feasibility of an ovarian stimulation protocol for follicular aspiration, the efficiency of videolaparoscopy for follicular aspiration and test a medium for in vitro oocyte maturation for the species Mazama gouazoubira. Five females were submitted to repeated ovarian stimulation (hormone protocol using controlled internal drug release), and estradiol benzoate on D0 and eight injections of follicle-stimulating hormone, once every 12 h, from D4 onwards at 30-day intervals. Fourteen surgical procedures were performed in superstimulated females, resulting in the collection of 94 oocytes and an average of 17.1 ± 9.1 follicles observed, 13.5 ± 6.6 follicles aspirated and 7.2 ± 3.7 oocytes collected per surgery. After collection, the oocytes were submitted to in vitro maturation for 24 h and stained with Hoechst 33342 dye to evaluate their nuclear status; 64.5% of the oocytes reached MII and 16.1% were spontaneously activated by parthenogenesis. The nuclear status of oocytes that did not undergo in vitro maturation was evaluated; 80.9% were found to be immature.


Author(s):  
Aakriti Bhandari ◽  
Harminder Singh ◽  
Amber Srivastava ◽  
Puneet Kumar ◽  
G. S. Panwar ◽  
...  

Abstract Background Sophora mollis Royle (family Fabaceae, subfamily-Papilionaceae) is a multipurpose legume distributed in plains and foothills of the North-West Himalaya to Nepal and is facing high risk of extinction due to habitat loss and exploitation by the local people for its fuel and fodder values. Therefore, the present study was conducted to standardize a micropropagation protocol for Sophora mollis by using shoot tip explants and to study the meiotic chromosome count in the species. Results Multiple shoots were induced in shoot tip explants of Sophora mollis in Murashige and Skoog medium supplemented with different concentrations of cytokinins alone (BAP, TDZ, and Kinetin) and in combination with varying concentrations of NAA. MS medium supplemented with BAP (8.9 μM) was observed to be the optimal medium for multiple shoot induction and maximum 25.32 shoots per explant was obtained with average length of 4.5 ± 0.8 cm. In vitro developed shoots were transferred onto rooting media supplemented with different concentrations of auxin (IAA, IBA, and NAA). Maximum 86% rooting was observed in half-strength MS medium supplemented with 21.20 μM NAA with an average of 21.26 roots per culture. In vitro raised plantlets were adapted to greenhouse for better acclimatization and 60% plants were successfully transferred to the open environment. Based on the chromosome counts available from the literature and the current study, the species tend to show a basic chromosome number of x = 9. Conclusion The micropropagation protocol standardized can be helpful for the ex situ mass multiplication and germplasm conservation of the endangered species. Moreover, the ex situ conservation approach will be helpful in actively bridging the gap between ex situ and in situ approaches through the reintroduction of species in the wild. The cytological studies revealed the basic chromosome number x = 9 of the species.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 934
Author(s):  
Chris O’Brien ◽  
Jayeni Hiti-Bandaralage ◽  
Raquel Folgado ◽  
Alice Hayward ◽  
Sean Lahmeyer ◽  
...  

Recent development and implementation of crop cryopreservation protocols has increased the capacity to maintain recalcitrant seeded germplasm collections via cryopreserved in vitro material. To preserve the greatest possible plant genetic resources globally for future food security and breeding programs, it is essential to integrate in situ and ex situ conservation methods into a cohesive conservation plan. In vitro storage using tissue culture and cryopreservation techniques offers promising complementary tools that can be used to promote this approach. These techniques can be employed for crops difficult or impossible to maintain in seed banks for long-term conservation. This includes woody perennial plants, recalcitrant seed crops or crops with no seeds at all and vegetatively or clonally propagated crops where seeds are not true-to-type. Many of the world’s most important crops for food, nutrition and livelihoods, are vegetatively propagated or have recalcitrant seeds. This review will look at ex situ conservation, namely field repositories and in vitro storage for some of these economically important crops, focusing on conservation strategies for avocado. To date, cultivar-specific multiplication protocols have been established for maintaining multiple avocado cultivars in tissue culture. Cryopreservation of avocado somatic embryos and somatic embryogenesis have been successful. In addition, a shoot-tip cryopreservation protocol has been developed for cryo-storage and regeneration of true-to-type clonal avocado plants.


Author(s):  
Asmaa Abdelsalam ◽  
Ehab Mahran ◽  
Kamal Chowdhury ◽  
Arezue Boroujerdi

Abstract Background Anarrhinum pubescens Fresen. (Plantaginaceae) is a rare plant, endemic to the Saint Catherine area, of South Sinai, Egypt. Earlier studies have reported the isolation of cytotoxic and anti-cholinesterase iridoid glucosides from the aerial parts of the plant. The present study aimed to investigate the chemical profiling of the wild plant shoots as well as establish efficient protocols for in vitro plant regeneration and proliferation with further assessment of the genetic stability of the in vitro regenerated plants. Results Twenty-seven metabolites have been identified in wild plant shoots using the Nuclear Magnetic Resonance (NMR) spectroscopy. The metabolites include alkaloids, amino acids, carbohydrates, organic acids, vitamins, and a phenol. In vitro propagation of the plant was carried out through nodal cutting-micropropagation and leaf segment-direct organogenesis. The best results were obtained when nodal cutting explants were cultured on Murashige and Skoog medium with Gamborg B5 vitamins supplemented with 6-benzylaminopurine (BAP) (1.0 mg/L) and naphthaleneacetic acid (NAA) (0.05 mg/L), which gave a shoot formation capacity of 100% and a mean number of shoots of 27.67 ± 1.4/explant. These shoots were successfully rooted and transferred to the greenhouse and the survival rate was 75%. Genetic fidelity evaluation of the micropropagated clones was carried out using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) molecular markers. Jaccard’s similarity coefficient indicated a similarity as high as 98% and 95% from RAPD and ISSR markers, respectively. Conclusions This study provides the chemical profiling of the aerial part of Anarrhinum pubescens. Moreover, in vitro regeneration through different tissue culture techniques has been established for mass propagation of the plant, and the genetic fidelity of the in vitro regenerated plants was confirmed as well. Our work on the in vitro propagation of A. pubescens will be helpful in ex situ conservation and identification of bioactive metabolites.


2005 ◽  
Vol 41 (4) ◽  
pp. 475-489 ◽  
Author(s):  
VINCENT LEBOT ◽  
ANTON IVANCIC ◽  
KUTTOLAMADATHIL ABRAHAM

This paper addresses the preservation and use of minor root crop genetic resources, mostly aroids and yams. Conservation is fraught with difficulty: ex situ collections are expensive to maintain and methods for on-farm conservation have not been studied. Conventional breeding strategies present serious limitations when applied to these species. Furthermore, the evaluation and distribution of improved material are as problematical as its conservation. The similarities shared by these species regarding their domestication, breeding constraints and improvement strategies as well as farmers' needs, are briefly reviewed. Based on these biological constraints, we propose a practical alternative to current conservation and breeding strategies. This approach focuses on the geographical distribution of allelic diversity rather than localized ex situ and/or in situ preservation of genotypes. The practical steps are described and discussed. First, a core sample representing the useful diversity of the species is assembled from accessions selected for their diverse and distant geographic origins, wide genetic distances, quality, agronomic performances and functional sexuality. Second, the geographical distribution of this core sample, in vitro via a transit centre, allows the direct use of selected genotypes by farmers or for breeding purposes. Third, the distribution of genes is realized in the form of clones resulting from segregating progenies and, fourth, farmers select clones with local adaptation.


2017 ◽  
Vol 9 (4) ◽  
pp. 27 ◽  
Author(s):  
Chie Shimaoka ◽  
Hirokazu Fukunaga ◽  
Seishu Inagaki ◽  
Shinichiro Sawa

The Orchidaceae are the largest and most diverse family of flowering plants on earth, and include some of the most important horticultural plants. While mycoheterotrophic orchids belonging to the genus Gastrodia are known to be provided with carbon through mycorrhizal fungi, the relationship between the plants and fungi is poorly understood. Furthermore, it is challenging to cultivate Gastrodia spp. in vitro. In this study, we present an efficient method for germinating Gastrodia pubilabiata (Gp), Gastrodia nipponica (Gn), and Gastrodia confusa (Gc) plants in vitro, which results in the production of a protocorm and tuber, as under natural conditions. The Gp and Gc plants produced flowers 126 and 124 days after germination, respectively, and set seed under our artificial conditions. In addition, Gp plants flowered up to three times a year from a single tuber. Using our artificial cultivation system, we identified some of the mycorrhizal fungi associated with these plants. Gastrodia spp. appear to obtain carbon from many kinds of mycorrhizal fungi. Our artificial cultivation method is a rapid and efficient means of growing Gastrodia spp. In addition to having applications in research and commercial nurseries, this method could be used to conserve Gastrodia spp. in ex situ, many of which are endangered.


Author(s):  
Elaine Yae Yamashita Sugauara ◽  
ElisângelaYumi Sugauara ◽  
Rosangela Rumi Sugauara ◽  
Wanessa de Campos Bortolucci ◽  
Herika Line Marko de Oliveira ◽  
...  

Bovine tick has caused losses in livestock production profitability in Brazil. However, tick control has caused resistance of these ectoparasites against utilized acaricides. Alternative tick controls have been utilizing plants as sources of effective botanical acaricides. Brunfelsia uniflora is a Brazilian plant with antimicrobial and antioxidant activity; however, there are no reports on its acaricidal activity. Therefore, this study aimed to evaluate the chemical composition of B. uniflora leaf ethanolic extract and its efficiency to control bovine tick in vitro and free-living stage ex situ. The crude leaf extract was analyzed by gas chromatographer coupled to mass spectrometer (GC-MS) with identification of 17 compounds. The major compounds were phytol (22.96%), 9,12,15-octadecatrienoic acid, ethyl ester (Z,Z,Z) (21.18%), hexadecanoic acid, ethyl ester (12.74%) and vitamin E (8.77%). The crude extract presented acaricidal activity in vitro against ingurgitated adult females, larvae and eggs of bovine tick. The LC99.9 for larvae was 103.21 mg mL-1 in in vitro tests and was 100% efficient for ex situ larva test (free-living stage). B. uniflora leaf extract is an alternative for the control of the bovine tick cycle, mainly in the free-living stage (non-parasitic stage) under field conditions.


2017 ◽  
Vol 46 (3) ◽  
pp. 614-622 ◽  
Author(s):  
Kirsten M. Hammett ◽  
Elizabeth J. Mullin ◽  
Diana S. Aga ◽  
Gary K. Felton ◽  
Daniel J. Fisher ◽  
...  

1990 ◽  
Vol 68 (1) ◽  
pp. 135-140 ◽  
Author(s):  
H. Kyle ◽  
J. P. Ward ◽  
J. G. Widdicombe

We measured the pH of airway surface liquid (ASL) secreted by the ferret trachea in vitro by using a catheter-tipped pH electrode implanted in a collecting cannula close to the airway epithelium. Mucus secretion was promoted by methacholine (0.02 mmol/l) in the organ bath. The pH of the ASL was 6.85 +/- 0.03 (SE) compared with a bath value of 7.39 +/- 0.01, when the bath was bubbled with 5.65% CO2. Changing the bath CO2 from 0 to 20.93% CO2 altered the bath pH from 8.06 to 6.96, but the ASL pH only varied from 6.92 to 6.85. This homeostasis of ASL pH was not the result of the buffering powers of the ASL, because ex situ buffer curves for secreted ASL were similar to those for Krebs-Henseleit solution. Changing the luminal CO2 content by blowing gases through the trachea changed ASL pH by values similar to that ex situ. However, when external organ bath CO2 was changed, the luminal CO2 changes were proportionately far smaller. Measurement of rates of diffusion of CO2 across the tracheal wall indicated that this was not a limiting factor in the results. Similarly, measurement of metabolic rate CO2 production in the tracheal lumen indicated that this did not significantly affect the results. We conclude that the pH of ASL is significantly on the acid side of the pH or interstitial fluid and plasma and that it is maintained relatively constant despite large changes in external pH.


Sign in / Sign up

Export Citation Format

Share Document