A frequency-domain grinding force model-based approach to evaluate the dynamic performance of high-speed grinding machine tools

2016 ◽  
Vol 20 (1) ◽  
pp. 115-131 ◽  
Author(s):  
Miaoxian Guo ◽  
Beizhi Li
2013 ◽  
Vol 690-693 ◽  
pp. 2395-2402 ◽  
Author(s):  
De Lin Qin ◽  
Feng Wang ◽  
Fang Jian Xi ◽  
Zhi Feng Liu

Aiming at the axle material 30CrMoA high speed cylindrical grinding force calculation problems, a consideration of plowing force grinding force model is established based on the Werner’s theory model of grinding force, and the friction force and plowing force coefficient is defined as variable parameters. On the basis of the finite element analysis software DEFORM-3D, a high speed cylindrical grinding simulation model method is presented.Through the theoretical value and simulation value contrast, a mutual authentication of grinding force model is proposed. According to the simulation analysis results of grinding force and grinding wheel speed, grinding depth and the relationship between the workpiece speed, theoretical and technical guidance for the grinding force calculation and the selection of grinding process parameters are provided.


2016 ◽  
Vol 693 ◽  
pp. 1187-1194
Author(s):  
Xiu Mei Chen ◽  
Qiu Shi Han ◽  
Bao Ying Peng ◽  
Qi Guang Li

In cam grinding process, the grinding force changes with the change of cam contour, and its change leads to create the error of X-C linkage servo-tracking position, all of the factors reduce the cam the contour accuracy. To improve the accuracy of the cam profile, and research the effect of X-C axis servo tracking, the key vector of grinding force to the position is proposed, in which the factors have been considered including the grinding depth, curvature change, cam width, length and other effects. According to the mechanical analysis of cam and grinding wheel, a cam grinding XC-axis grinding force model is established. With the flat-bottomed follower cam as an example, the grinding force of X axis and C axis is calculated. The cam grinding experiment was conducted in the grinding machine, the tangential grinding force and normal grinding force were obtained and the model was verified. The grinding force mathematical model of X-C linkage provides the theoretical basis for the servo tracking position of X-C linkage grinding.


2010 ◽  
Vol 156-157 ◽  
pp. 1609-1612 ◽  
Author(s):  
Xiao Long Shen ◽  
Cheng Gao Ren ◽  
Zhi Mou Pi ◽  
Dai Li Zhu

Design of the dynamic performance of a machine tool is an effective approach to improve the machining accuracy. In this paper, the dynamic performance of high-speed cylindrical grinder has been studied systematically to improve the surface quality of high-speed grinding. According to the mode shape graphs and the power spectra, the vibration weak links and the main vibration sources of the prototype were found, and then the improvement measures were presented by designing the dynamic performance tests. The fact that the chatter of high-speed grinding can be suppressed to a certain extent with variable speed grindings was verified in variable speed grinding experiments at high speed.


2019 ◽  
Vol 37 ◽  
pp. 496-508 ◽  
Author(s):  
Sijie Yan ◽  
Xiaohu Xu ◽  
Zeyuan Yang ◽  
Dahu Zhu ◽  
Han Ding

2020 ◽  
Vol 12 (7) ◽  
pp. 168781402094047
Author(s):  
He Li ◽  
Yu Wang ◽  
Deen Bai ◽  
Fuyan Lyu ◽  
Kuidong Gao ◽  
...  

As a kind of promising noncontact bearings, ultrasonic bearings actuated by smart materials such as lead zirconate titanate ceramics show a good application prospect in high-speed machines and precision-measuring devices. The suspending force is one of the most important parameters that play a dominated role on the bearing’s static and dynamic performance. A suspending force model based on acoustic radiation theory for cylindrical object near sound source is built to predict the radial carrying capacity of an ultrasonic bearing actuated by three piezoelectric transducers. To validate the model, an ultrasonic bearing prototype is developed and a testing system is established. For observing the bearing’s dynamic running performance at high speeds, the bearing’s running experiment is carried out and the rotor center’s trajectory data and frequency spectrum are acquired to analyze the bearing’s dynamic characteristics at high speeds. The suspending force model and running performance experiments will contribute to the design, detection, and test of this type of bearings.


2010 ◽  
Vol 126-128 ◽  
pp. 77-81
Author(s):  
Wan Shan Wang ◽  
Peng Guan ◽  
Tian Biao Yu

The future development of the manufacturing is using VR technology to make the machining simulation before the actual machining process made. The machining simulation of Ultra High-speed Grinding Machine Tool is researched in this paper. Firstly, using UG/NX software and VRML, the geometric modeling of machine tool is modeled. Secondly, through using Java and Javascript language, the operation and display of machining process of ultra high-speed grinding are realized. The main technologies include NC codes compiling, collision detection and material removal. Thirdly, the example of machining simulation using virtual ultra high-speed grinding machine tool can be obtained in the paper. Compared to other CNC machining simulation methods, the method in the paper has reality display, rich features, a good man-machine interaction, etc., and it does not rely on expensive CAD/CAM software. The system files generated by the machining simulation have the small size and can be transferred on the network easily.


2006 ◽  
Vol 113 ◽  
pp. 367-370
Author(s):  
Vladas Vekteris

Lubrication and cooling of a high speed grinding process in the grinding machine as in a mechatronic system using technological liquids are analyzed in this paper. It is shown that in the case of high grinding speed, technological liquids undergo an aeration process and due to this their physical properties change. Reynolds equation, which estimates the aeration liquid, is derived. It is shown, that the application of such an equation is proper only in the finishing of grinding. Experimental research is also presented in the paper, which shows the influence of technological liquids to the temperature field of the grinding machine and to its automatic control.


Sign in / Sign up

Export Citation Format

Share Document