Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan

2009 ◽  
Vol 44 (13) ◽  
pp. 1424-1429 ◽  
Author(s):  
Chia-Hsien Yen ◽  
Jao-Jia Horng



Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 956
Author(s):  
Jong-Kwon Im ◽  
Yong-Chul Cho ◽  
Hye-Ran Noh ◽  
Soon-Ju Yu

Volatile organic compounds (VOCs), with negative impacts on the aquatic ecosystem, are increasingly released into the environment by anthropogenic activities. Water samples were collected from five areas of the Han River Watershed (HRW) tributaries, South Korea, to detect 11 VOCs, which were classified as halogenated aliphatic hydrocarbons (HAHs) and aromatic hydrocarbons (AHs). Among the 11 VOCs, 1,1-dichloroethylene, 1,1,1-trichloroethane, and vinyl chloride were undetected. The highest concentration compounds were chloroform (0.0596 ± 0.1312 µg/L), trichloroethylene (0.0253 ± 0.0781 µg/L), and toluene (0.0054 ± 0.0139 µg/L). The mean concentration (0.0234 µg/L) and detection frequency (37.0%) of HAHs were higher than those of AHs (0.0036 µg/L, 21.0%, respectively). The Imjin Hantan River area exhibited the highest mean concentration (0.2432 µg/L) and detection frequency (22.9%), because it is located near industrial complexes, thus, highlighting their role as important VOC sources. However, the detected VOCs had lower concentrations than those permitted by the EU, WHO, USA, and South Korea drinking water guidelines. Ecological risks associated with the VOCs were estimated by risk quotient (RQ); consequently, the predicted no-effect concentration was 0.0029 mg/L, and the toluene and styrene RQ values were >1 and >0.5, respectively. The findings may facilitate policymakers in designing pollution control strategies.



2013 ◽  
Vol 26 (4) ◽  
pp. 268-275 ◽  
Author(s):  
Hyo-Jae Jo ◽  
Bo-Won Kim ◽  
Yong-Hyun Kim ◽  
Min-Hee Lee ◽  
Sang-Hee Jo ◽  
...  


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 760 ◽  
Author(s):  
Wanyi Qiu ◽  
Shule Li ◽  
Yuhan Liu ◽  
Keding Lu

Due to the development of industrialization and urbanization, secondary pollution is becoming increasingly serious in the Yangtze River Delta. Volatile organic compounds (VOCs) are key precursors of the near-surface ozone, secondary organic aerosol (SOA), and other secondary pollutants. In this study, we chose a serious ozone pollution period (01 May–31 July 2017) in Jinshan, which is a petrochemical and industrial area in Shanghai. We explored the VOCs distribution characteristics and contribution to secondary pollutants via constructing a regional network based on wind patterns. We determined that dense pollutants were accumulated at adjacent sites under local circulation (LC), and pollution from petrochemical discharge was more serious than industry for all sites under southeast (SE) wind. We also found that cyclopentane, o-xylene, m/p-xylene, 1-3-butadiene, and 1-hexene were priority-controlled species as they were most vital to form secondary pollutants. This study proves that regional network analysis can be successfully applied to explore pollution characteristics and regional secondary pollutants formation.



2011 ◽  
Vol 250-253 ◽  
pp. 935-938 ◽  
Author(s):  
Shi Jing Sun ◽  
Jun Shen ◽  
Zhong Yuan Zhao

In order to comprehensive understand and control volatile organic compounds (VOCs) release from particleboards, this paper takes Larix gmelini particleboard as example and analyzes VOCs by three different methods. First of all, VOCs of Larix gmelini particles were detected by the static head space solid-phase micro-extraction (HS-SPME) technique. Secondly Larix gmelini particleboards were analyzed using the method of adsorbed by activated carbon, desorpted with methylene dichloride and measured by GC/MS. Finally, Tenax-T Thermal desorption -GC/MS was used to qualitative VOCs emissions. The best method for determination VOCs from particleboards was found. SPME is a simple operation method with short time. But the pretreatment of sample was troublesome and it is not easily measured for lower concentration particleboards. Active carbon absorption method is not suitable for quantitative because of much error in extraction. It is suitable for qualitative analysis. Tenax-T is a simple operation way with short analysis time and good shape of chromatographic. It is a convenient and practical method. Further study of VOCs emission of panels can be supported by this method.





Sign in / Sign up

Export Citation Format

Share Document