Comparisons of radial growth and tree-ring cellulose δ13C for Pinus sylvestris var. mongolica in natural and plantation forests on sandy lands

2017 ◽  
Vol 22 (3) ◽  
pp. 160-168 ◽  
Author(s):  
Lining Song ◽  
Mingcai Li ◽  
Jiaojun Zhu ◽  
Jinxin Zhang
2018 ◽  
Vol 79 (2) ◽  
pp. 105-112
Author(s):  
Anna Cedro ◽  
Bernard Cedro

Abstract The aim of the present work was to characterize the growth – climate relationship of pines growing in the Szczecin city forests in intensively used recreational areas and to identify the effect of air pollutants emitted by a nearby chemical factory on tree-ring width. Our research area was located in the Głębokie forest complex, which is one of the most frequently visited. The chemical factory Police that produces fertilizers is located at a distance 11 km away from the study plot. The largest emissions of pollutants from the factory in terms of volume occurred in the 1980s and early 1990s. Wood samples were collected from Scots pine (Pinus sylvestris L.) with the Pressler borer from 30 trees and examined using standard dendrochronological methodology. The result was a local chronology of 169 years from 1848–2016. Dendroclimatological analyses indicated that the weather conditions at the turn from winter to spring are the dominant factors influencing radial growth. For example, higher than average temperatures in February, March and April result in a wide tree-ring in the upcoming growth season. Following Nowacki and Abram’s method, we also determined the relative growth change in order to delimit the timeframe when air pollution potentially alters tree-ring width. Due to the lack of data for the period 1848–1945, the increasing and decreasing relative growth could not be linked to specific events. For the period 1944–1972 however, we observed and increase in the tree-ring width, which in this case can be attributed to favorable weather conditions. The final period, 1973–1991, on the other hand showed the strongest decline in annual growth throughout our chronology and this was largely due to the nearby chemical factories, which released huge amounts of pollution into the atmosphere during this period. At present, despite new technologies and a decrease in overall production by the nearby chemical factory, we found a negative trend in ring width dynamics indicating a need for pollutant monitoring and further research.


Author(s):  
A N. Kabanov ◽  
◽  
S.A. Kabanova ◽  

Dendrochronological analysis was carried out in forest cultures of Pinus sylvestris of different ages growing in the green zone of Nur-Sultan city. It was found that the value of the annual radial growth is subject to a cycle with a period of 10-11 years. This is due to climatic conditions, in particular, with periods of solar insolation, which is confirmed by researches of other authors.


Radiocarbon ◽  
2020 ◽  
pp. 1-10
Author(s):  
Marek Krąpiec ◽  
Andrzej Rakowski ◽  
Jacek Pawlyta ◽  
Damian Wiktorowski ◽  
Monika Bolka

ABSTRACT Radiocarbon (14C) analyses are commonly used to determine the absolute age of floating tree-ring chronologies. At best, with the wiggle-matching method, a precision of 10 years could be achieved. For the early Middle Ages, this situation has been markedly improved by the discovery of rapid changes in atmospheric 14C concentrations in tree-rings dated to 774/775 and 993/994 AD. These high-resolution changes can be used to secure other floating tree-ring sequences to within 1-year accuracy. While a number of studies have used the 774 even to secure floating tree-ring sequences, the less abrupt 993 event has not been so well utilized. This study dates a floating pine chronology from Ujście in Wielkopolska (Greater Poland) (NW Poland), which covers the 10th century period and is critical for studies on the beginning of the Polish State to the calendar years 859–1085 AD using the changes in single year radiocarbon around 993/4 AD.


2021 ◽  
Author(s):  
Olga Churakova (Sidorova) ◽  
Marina Fonti ◽  
Rolf Siegwolf ◽  
Tatyana Trushkina ◽  
Eugene Vaganov ◽  
...  

<p>We use an interdisciplinary approach combining stable isotopes in tree rings, pollen data, ice cores from temperature-limited environment in the Siberian north and developed a comprehensive description of the climatic changes over the past 1500 years. We found that the Climatic Optimum Period was warmer and drier compared to the Medieval one, but rather similar to the recent period. Our results indicate that the Medieval Warm period in the Taimyr Peninsula started earlier and was wetter compared to the northeastern part of Siberia (northeastern Yakutia). Summer precipitation reconstruction obtained from carbon isotopes in tree-ring cellulose from Taimyr Peninsula significantly correlated with the pollen data of the Lama Lake (Andreev et al. 2004) and oxygen isotopes of the ice core from Severnaya Zemlya (Opel et al. 2013) recording wetter climate conditions during the Medieval Warm period compared to the northeastern part of Siberia. Common large-scale climate variability was confirmed by significant relationship between oxygen isotope data in tree-ring cellulose from the Taimyr Peninsula and northeastern Yakutia, and oxygen isotope ice core data from Severnaya Zemlja during the Medieval Warm period and the recent one. Finally, we showed that the recent warming on the Taimyr Peninsula is not unprecedented in the Siberian north. Similar climate conditions were recorded by stable isotopes in tree rings, pollen, and ice core data 6000 years ago. On the northeastern part of Siberia newly developed a 1500-year summer vapor pressure deficit (VPD) reconstruction showed, that VPD increased recently, but does not yet exceed the maximum values reconstructed during the Medieval Warm period. The most humid conditions in the northeastern part of Siberia were recorded in the Early Medieval period and during the Little Ice Age. However, the increasing VPD under elevated air temperature in the last decades affects the hydrological regime of these sensitive ecosystems by greater evapotranspiration rates. Further VPD increase will significantly affect Siberian forests most likely leading to drought even under additional access of thawed permafrost water.</p><p>This work was supported by the FP7-PEOPLE-IIF-2008 - Marie Curie Action: "International Incoming Fellowships" 235122 and "Reintegration Fellowships" 909122 “Climatic and environmental changes in the Eurasian Subarctic inferred from tree-ring and stable isotope chronologies for the past and recent periods” and the Government of Krasnoyarsk Kray and Russian Foundation for Basic Research and Krasnoyarsk Foundation 20-44-240001 “Adaptation of conifer forests on the north of the Krasnoyarsk region (Taimyr Peninsula) to climatic changes after extreme events over the past 1500 years“ awarded to Olga V. Churakova (Sidorova).</p>


1997 ◽  
Vol 102 (D16) ◽  
pp. 19507-19516 ◽  
Author(s):  
I. Robertson ◽  
V. R. Switsur ◽  
A. H. C. Carter ◽  
A. C. Barker ◽  
J. S. Waterhouse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document