Electrochemical investigation of allopurinol polymerised carbon paste electrode interface for epinephrine and folic acid sensing in pharmaceutical samples

Author(s):  
Amit. B. Teradale ◽  
Pattan Siddappa Ganesh ◽  
Shekar. D. Lamani ◽  
B. E. K Swamy ◽  
Swastika. N. Das
2021 ◽  
Vol 5 (1) ◽  
pp. 3
Author(s):  
Guadalupe Yoselin Aguilar-Lira ◽  
Prisciliano Hernandez ◽  
Giaan Arturo Álvarez-Romero ◽  
Juan Manuel Gutiérrez

This work describes the development of a novel and low-cost methodology for the simultaneous quantification of four main nonsteroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical samples using differential pulse voltammetry coupled with an artificial neural network model (ANN). The working electrode used as a detector was a carbon paste electrode (CPE) modified with multi-wall carbon nanotubes (MWCNT-CPE). The specific voltammetric determination of the drugs was performed by cyclic voltammetry (CV). Some characteristic anodic peaks were found at potentials of 0.446, 0.629, 0.883 V related to paracetamol, diclofenac, and aspirin. For naproxen, two anodic peaks were found at 0.888 and 1.14 V and for ibuprofen, an anodic peak was not observed at an optimum pH of 10 in 0.1 mol L−1 Britton–Robinson buffer. Since these drug’s oxidation process turned out to be irreversible and diffusion-controlled, drug quantification was carried out by differential pulse voltammetry (DPV). The Box Behnken design technique’s optimal parameters were: step potential of 5.85 mV, the amplitude of 50 mV, period of 750 ms, and a pulse width of 50 ms. A data pretreatment was carried out using the Discrete Wavelet Transform using the db4 wavelet at the fourth decomposition level applied to the voltammetric records obtained. An ANN was built to interpret the obtained approximation coefficients of voltammograms generated at different drug concentrations to calibrate the system. The ANN model’s architecture is based on a Multilayer Perceptron Network (MLP) that employed a Bayesian regularization training algorithm. The trained MLP achieves significant R values for the test data to simultaneous quantification of the four drugs in the presence of aspirin.


2021 ◽  
Author(s):  
Sareh Sadat Moshirian-Farahi ◽  
Hassan Ali Zamani ◽  
Mohammad Reza Abedi

Abstract A highly sensitive and selective modified electrode was successfully developed for the monitoring of nicotinamide adenine dinucleotide (NADH) in the presence of folic acid. In this regard, a carbon paste electrode (CPE) was functionalized by the nitrogen-doped carbon quantum dots/tin oxide (N-CQDs/SnO2) nanocomposite and 1-butyl-2,3-dimethyl imidazolium hexafluorophosphate ([C4DMIM][PF6]) ionic liquid (IL). The structure and surface morphology of the nanocomposite were characterized by various methods, including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). The modified electrode displayed powerful and long-lasting electron mediating activity, with well-separated NADH and folic acid oxidation peaks. The sensing response of the developed [C4DMIM][PF6]/N-CQDs/SnO2/CPE platform was evaluated by determining NADH via the voltammetric technique under the optimized operating conditions. The current peaks of the square wave voltammograms of NADH and folic acid increased linearly with enhancing its concentrations within the ranges of 0.003 - 275 µM NADH and 0.4 - 380 µM folic acid. The detection limits for NADH and folic acid were obtained at 0.8 nM and 0.1 µM, respectively. Interference species such as glucose, urea, tryptophan, glycine, methionine, and vitamin B12 had no influence on the ability of the fabricated modified electrode to detect the target species. The low detection limit, high sensitivity, excellent selectivity, superior stability, and cost-effectiveness made it suitable for the quantification of NADH in the real biological samples with the recovery percent values in the range of 97.5 - 103%.


Sign in / Sign up

Export Citation Format

Share Document