Fabrication and testing of hybrid fibre reinforced composite: a comprehensive review

Author(s):  
Kapil K. Sharma ◽  
Jitendra Kushwaha ◽  
Kapil Kumar ◽  
Harshit Singh ◽  
Yogesh Shrivastava
2021 ◽  
Author(s):  
Sonia Mogilevskaya ◽  
Anna Y Zemlyanova ◽  
Volodymyr Kushch

Abstract Modern advances in material science and surface chemistry lead to creation of composite materials with enhanced mechanical, thermal, and other properties. It is now widely accepted that the enhancements are achieved due to drastic reduction in sizes of some phases of composite structures. This leads to increase in surface to volume ratios, which makes surface- or interface-related effects to be more significant. For better understanding of these phenomena, the investigators turned their attention to various theories of material surfaces. This paper is a review of two most prominent theories of that kind, the Gurtin-Murdoch and Steigmann-Ogden theories. Here, we provide comprehensive review of relevant literature, summarize the current state of knowledge, and present several new results.


2020 ◽  
pp. 073168442095671
Author(s):  
Ng Lin Feng ◽  
Sivakumar Dhar Malingam ◽  
Chen Wei Ping

Fibre metal laminates are advanced sandwich materials that offer various outstanding properties over conventional metallic alloys and composites. This research study intends to investigate the effects of weaving architectures and stacking configurations on the mechanical properties of fibre metal laminates based on kenaf/pineapple leaf fibre. Fibre metal laminates were fabricated through the hot moulding compression technique. Mechanical tests were performed on the kenaf/pineapple leaf fibre-based fibre metal laminates. In accordance with the findings obtained, hybridisation had led to the improvement in the mechanical properties of fibre metal laminates in comparison with [K/K/K] fibre metal laminates. Overall, twill woven-ply [P/P/P] fibre metal laminates showed the highest tensile and flexural strength, which was 14.53% and 33.50% higher than twill woven-ply [K/K/K] fibre metal laminates, respectively. Besides, the twill woven-ply [P/P/P] fibre metal laminates also displayed the highest impact strength and indentation properties compared to other non-hybrid and hybrid fibre metal laminates. When comparing the fibre metal laminates with different weaving architectures, twill woven-ply fibre metal laminates were shown to have higher mechanical properties over those of plain woven-ply fibre metal laminates.


2020 ◽  
Vol 2020 ◽  
pp. 1-27
Author(s):  
C. H. Lee ◽  
A. Khalina ◽  
S. H. Lee ◽  
Ming Liu

Natural fibres are a gift from nature that we still underutilise. They can be classified into several groups, and bast natural fibre reinforcement in polymer composites has the most promising performance, among others. However, numerous factors have reported influences on mechanical properties of the fibre-reinforced composite, including natural fibre retting processes. In this review, bast fibre retting process and the effect of enzymatic retting on the fibre and fibre-reinforced polymer composites have been discussed and reviewed for the latest research studies. All retting methods except chemical and mechanical retting processes are involving secretion of enzymes by bacteria or fungi under controlled (enzymatic retting) or random conditions (water and dew retting). Besides, enzymatic retting is claimed to have more environmentally friendly wastewater products, shorter retting period, and controllable fibre biochemical components under mild incubation conditions. This review comprehensively assesses the enzymatic retting process for producing high-quality bast fibre and will become a reference for future development on bast fibre-reinforced polymer composites.


1991 ◽  
Vol 36 (6) ◽  
pp. 529-529
Author(s):  
Mary Catherine King
Keyword(s):  

2020 ◽  
Vol 56 (7) ◽  
pp. 1233-1251
Author(s):  
Lisa Jacquey ◽  
Jacqueline Fagard ◽  
Rana Esseily ◽  
J. Kevin O'Regan

2012 ◽  
Author(s):  
Andrew Frazer ◽  
Kelly S. Flanagan ◽  
Kendra B. Battaglia

Sign in / Sign up

Export Citation Format

Share Document