In vitrorooting of rootstock GF-677 (Prunus amygdalus×P. persica) as influenced by mineral concentration of the nutrient medium and type of culture-tube sealing material

1995 ◽  
Vol 70 (1) ◽  
pp. 105-108 ◽  
Author(s):  
K. Dimassi-Theriou
Author(s):  
A. K. Veligodska ◽  
O. V. Fedotov ◽  
A. S. Petreeva

<p>The influence of certain nitrogen compounds - components of glucose-peptone medium (GPM) on the accumulation of carotenoids by some strains was investigated by surface cultivating basidiomycetes. The total carotenoid content was set in acetone extracts of mycological material spectrophotometrically and calculated using the Vetshteyn formula.</p> <p>As the nitrogen-containing components used GPM with 9 compounds, such as peptone, DL-valine, L-asparagine, DL-serine, DL-tyrosine, L-proline, L-alanine, urea, NaNO<sub>3</sub>. The effect on the accumulation of specific compounds both in the mycelium and in the culture fluid of carotenoids by culturing certain strains of Basidiomycetes was identified.</p> <p>Adding to standard glucose-peptone medium peptone at 5 g/l causes an increase of carotenoid accumulation by strain <em>L. sulphureus</em> Ls-08, and in a concentration of 4 g/l by strains of <em>F. hepatica </em>Fh-18 and <em>F. fomentarius</em> Ff-1201.</p> <p>In order to increase the accumulation of carotenoids in the mycelium  we suggested to make a standard glucose-peptone medium with proline or valine for cultivating of <em>L. sulphureus</em> Ls- 08 strain; alanine for <em>F. fomentarius</em> Ff-1201 strain; proline, asparagine and serine - for strain Fh-18 of <em>F. hepatica</em>. The results can be implemented in further optimization of the composition of the nutrient medium for culturing strains of Basidiomycetes wich producing carotenoids.</p> <p><em>Keywords: nitrogen-containing substances, Basidiomycetes, mycelium</em><em>,</em><em> culture filtrate, carotenoids</em></p>


2019 ◽  
Author(s):  
M. Harnafi ◽  
I. Touiss ◽  
S. Khatib ◽  
O. Bekkouch ◽  
M. Rouis ◽  
...  

Ce travail a été conçu pour étudier l’effet d’un extrait riche en polyphénols de l’enveloppe charnue de l’amande douce sur le profil lipidique plasmatique chez la souris rendue hyperlipidémique par le Triton WR-1339 ainsi que sur la prévention de l’oxydation des lipoprotéines plasmatiques en comparaison avec le fénofibrate et l’hydroxyanisole butylé. On note que l’extrait phénolique réduit significativement le cholestérol total plasmatique de 58 % (p < 0,001) et les triglycérides de 62 % (p < 0,001). Par ailleurs, cet extrait réduit significativement le taux élevé du cholestérol-LDL de 61 % (p < 0,05) et augmente le cholestérol-HDL de 71 % (p < 0,05). Un tel extrait abaisse aussi significativement la valeur de l’indice d’athérogénicité de −72 % (p < 0,01) et celle du rapport LDL/ HDL de 55 % (p < 0,05). En outre, cet extrait possède un effet antiradical 2,2-diphényl-1-picrylhydrazyl dosedépendant avec une CI50 = 18,8 ± 0,55 μg/ml et inhibe significativement l’oxydation du plasma riche en lipoprotéines (CI50 = 13,8 ± 0,57 μg/ml). Nos résultats montrent que l’extrait est riche en polyphénols à caractère polaire (polyphénols totaux : 342,63 ± 3,44 mg/g, tannins : 144,67 ± 6,83 mg/g, flavonoïdes : 20,66 ± 0,92 mg/g) qui pourraient améliorer le métabolisme lipidique et prévenir l’oxydation des lipoprotéines et ainsi avoir un effet bénéfique dans la prévention de l’athérosclérose et des maladies cardiovasculaires qui en résultent.


2018 ◽  
Vol 69 (10) ◽  
pp. 2913-2915
Author(s):  
Daniela Jumanca ◽  
Anamaria Matichescu ◽  
Atena Galuscan ◽  
Laura Cristina Rusu ◽  
Cornelia Muntean

This experimental study aims to analyse the effectiveness of various materials used in demineralisation of dental enamel. This work aims to create a mechanical bond by filling the pegs with sealing material. In order to achieve this goal, five teeth were compared using different concentrations of orthophosphoric acid and exposure times. In this regard, five different tests were performed and the results were analysed using the SEM technique (scanning electron microscopy). These comparative analyses revealed that etching using 35% orthophosphoric acid for one minute and etching using Icon Etch for two minutes were the most effective.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 506b-506
Author(s):  
Carol D. Robacker ◽  
S.K. Braman

Azalea lace bug (Stephanitis pyrioides) is the most serious pest on azalea. Results of laboratory bioassays and field evaluations of 17 deciduous azalea taxa have identified three resistant taxa: R. canescens, R. periclymenoides, and R. prunifolium. Highly susceptible taxa are `Buttercup', `My Mary', R. oblongifolium, and the evergreen cultivar `Delaware Valley White'. To determine whether in vitro techniques would have potential value in screening or selecting for resistance, or for the identification of morphological or chemical factors related to resistance, an in-vitro screening assay was developed. In-vitro shoot proliferation was obtained using the medium and procedures of Economou and Read (1984). Shoots used in the bioassays were grown in culture tubes. Two assays were developed: one for nymphs and one for adult lace bugs. To assay for resistance to nymphs, `Delaware Valley White' leaves containing lace bug eggs were disinfested with 70% alcohol and 20% commercial bleach, and incubated in sterile petri plates with moistened filter paper until the nymphs hatched. Five nymphs were placed in each culture tube, and cultures were incubated for about 2 weeks, or until adults were observed. To assay for resistance to adults, five female lace bugs were placed in each culture tube and allowed to feed for 5 days. Data collected on survival and leaf damage was generally supportive of laboratory bioassays and field results. Adult lace bugs had a low rate of survival on resistant taxa. Survival of nymphs was somewhat reduced on resistant taxa.


1975 ◽  
Vol 10 (1) ◽  
pp. 73-83
Author(s):  
J.E.S. Graham ◽  
T.C. Hutchinson

Abstract Crude oil spills are increasingly likely to occur from drilling, pumping and transportation activities as oil development proceeds at a rapid pace. These spills may occur over the wide range of climatic conditions which obtain in Canada. Little is known of oil toxicity at different temperatures; consequently, laboratory studies were made of the variability of the toxicity of aqueous extracts of a Norman Wells crude oil to freshwater algae over the temperature range 5°C to 35°C. Two unicellular green algae were studied: Chlamydomonas eugametos and Chlorella vulgaris. Their response (measured by cell numbers) varied with temperature and species. Whereas Chlamydomonas eugametos showed a general pattern of growth inhibition by oil at all temperatures with maximum inhibition at 25°C, Chlorella vulgaris showed general growth stimulation by oil with maximum stimulation at 25°C, this temperature was chosen for all further experimentation. All experiments were done using unialgal cultures and sterile technique. Cells were grown in 50 ml of nutrient medium (BBM) in 125 ml Erlenmeyer flasks. Such flasks allow gas exchange and permit loss of volatile hydrocarbons. Aqueous extracts were made by slowly stirring 5% crude oil with the nutrient medium for six hours using a magnetic mixer. The extract was then allowed to sit for two to four hours before the lower fraction was drawn off for use. Experiments were carried out in controlled environment chambers (±2°C) with a twelve hour light-dark cycle. All further experiments used a similar methodology. (Note: Chlamydomonas eugametos experiments were carried out on a rotary shaker at 125 rpm.) An attempt was made to determine the reason for the remarkable stimulation in growth of Chlorella vulgaris #29 at 25°C. This organism has been described in the literature as heterotrophic. Thus three reasons for stimulation seemed possible: 1. heterotrophic uptake of hydrocarbons directly from solution; 2. heterotrophic uptake of organic compounds formed or released by microbial breakdown of hydrocarbons (the aqueous extract of crude was not sterile); or 3. the use of CO2 released to solution by microbial respiration. The original experiment was repeated in the dark at 20°C to determine if stimulation still occurred. It did not, since cells exposed to the aqueous extract decreased in numbers. However, after two weeks the cells were illuminated and even though experimental flasks started off with depleted populations, they outgrew the control cells within two weeks. This suggested that if stimulation was related to heterotrophism, it must, at least in this case, have been the unusual case of photoheterotrophism. The reasons for this stimulation of growth are currently under investigation. Several methods are being employed to investigate the suspected heterotrophism. Experiments will be done to determine whether light energy is essential to the stimulation. Two varieties of Chlorella vulgaris, i.e. #29 and #260 are heterotrophic and autotrophic respectively, are to be used in experiments. Sterile aqueous extracts made by pressure ultrafiltration will be used. These experiments should determine whether algal growth stimulation is related to heterotrophism or whether microbial degradation of hydrocarbons is the real source of stimulation. Although the toxicity of crude oil may be rapidly ameliorated by physical and/or biological phenomena, one must still be aware of the possibility of a large input of organic carbon causing extensive eutrophication. Thus both toxicity and eutrophication will cause a selection, in terms of survival, in a natural environment. It is evident that although an oil spill may not totally destroy an ecosystem, it will certainly alter its natural composition considerably.


Sign in / Sign up

Export Citation Format

Share Document