A comprehensive study on the performance of alkali activated fly ash/GGBFS geopolymer concrete pavement

Author(s):  
Aishwarya Badkul ◽  
Rakesh Paswan ◽  
S. K. Singh ◽  
J. P. Tegar
2021 ◽  

Concrete is the most versatile, durable and reliable material and is the most used building material. It requires large amounts of Portland cement which has environmental problems associated with its production. Hence, an alternative concrete – geopolymer concrete is needed. The general aim of this book is to make significant contributions in understanding and deciphering the mechanisms of the realization of the alkali-activated fly ash-based geopolymer concrete and, at the same time, to present the main characteristics of the materials, components, as well as the influence that they have on the performance of the mechanical properties of the concrete. The book deals with in-depth research of the potential recovery of fly ash and using it as a raw material for the development of new construction materials, offering sustainable solutions to the construction industry.


Activated Slag (AAS) and Fly Ash (FA) based geopolymer concrete a new blended alkali-activated concrete that has been progressively studied over the past years because of its environmental benefits superior engineering properties. Geopolymer has many favorable characteristics in comparison to Ordinary Portland Cement. Many base materials could be utilized to make geopolymer with the convenient concentration of activator solution. In this study, the experimental program composed of two phases; phase on divided into four groups; Group one deliberated the effect of sodium hydroxide molarity and different curing condition on compressive strength. Group two studied the effect of alkali activated solution (NaOH and Na2SiO3) content on compressive strength and workability. The effect of sand replacement with slag on compressive strength and workability was explained in group three. Group four studied the effect of slag replacement with several base materials Fly Ash (FA), Ordinary Portland Cement (OPC), pulverized Red Brick (PRB), and Meta Kaolin (MK). Phase two contains three mixtures from phase one which had the highest compressive strength. For each mixture, the fresh concrete test was air content. In addition the hardened concrete tests were the compressive strength at 3, 7, 28, 90, 180, and 365 days, the flexural strength at 28, 90, and 365 days, and the young's modulus at 28, 90, and 365 days. Moreover; the three mixtures were exposed to elevated temperature at 100oC, 300oC, and 600oC to study the effect of elevated temperature on compressive and flexural strength.


2019 ◽  
Vol 289 ◽  
pp. 11001 ◽  
Author(s):  
Adrian Lăzărescu ◽  
Călin Mircea ◽  
Henriette Szilagyi ◽  
Cornelia Baeră

As concrete demand is constantly increasing in recent years and also considering that cement production is both a consumer of natural resources and a source of carbon dioxide release into the atmosphere, there have been worldwide investigations into green alternatives for making concrete environmentally friendlier and simultaneously to satisfy the development of infrastructure facilities. The use of fly ash as a component of cementitious binders is not new but when considering the specific case of alkaline activation and fly ash representing the only source for the binder formation, it necessitates a more complete understanding of its specific reactions during the alkaline activation process. Since the fly ash varies dramatically, not only from one source to another, but also from one batch to another even when provided by the same power plant, its chemistry in obtaining alkali-activated materials during the geopolymerisation process and the final mechanical properties are considered crucial for the performance of geopolymer concrete. This paper will provide a review of the experimental results concerning the physical and mechanical evaluation of the alkali-activated fly ash-based geopolymer materials, developed with different types of fly ash, for a better understanding of geopolymer concrete production control.


2021 ◽  
Vol 11 (18) ◽  
pp. 8722
Author(s):  
Rana Muhammad Waqas ◽  
Faheem Butt ◽  
Xulong Zhu ◽  
Tianshui Jiang ◽  
Rana Faisal Tufail

Geopolymer concrete (GPC), also known as an earth friendly concrete, has been under continuous study due to its environmental benefits and potential as a sustainable alternative to conventional concrete construction. However, there is still a lack of comprehensive studies focusing on the influence of all the design mix variables on the fresh and strength properties of GPC. GPC is still a relatively new material in terms of field application and has yet to secure international acceptance as a construction material. Therefore, it is important that comprehensive studies be carried out to collect more reliable information to expand this relatively new material technology to field and site applications. This research work aims to provide a comprehensive study on the factors affecting the fresh and hardened properties of ambient cured fly ash and slag based geopolymer concrete (FS-GPC). Industrial by-products, fly ash from thermal power plants, and ground granulated blast furnace slag from steel industries were utilized to produce ambient cured FS-GPC. A series of experiments were conducted to study the effect of various parameters, i.e., slag content (10%, 20%, 30%, and 50%), amount of alkaline activator solution (AAS) (35% and 40%), sodium silicate (SS) to sodium hydroxide (SH) ratio (SS/SH = 2.0, 2.5 and 3.0), sodium hydroxide concentration (10 M, 12 M, and 14 M) and addition of extra water on fresh and mechanical properties of FS-GPC. The workability of the fresh FS-GPC mixes was measured by the slump cone test. The mechanical properties of the mixes were evaluated by compressive strength, split tensile strength, flexure strength, and static modulus tests. The results revealed that workability of FS-GPC is greatly reduced by increasing slag content, molarity of NaOH solution, and SS/SH ratio. The compressive strength was improved with an increase in the molarity of NaOH solution and slag content and a decrease in AAS content from 40% to 35%. However, the influence of SS/SH ratio on mechanical properties of FS-GPC has a varying effect. The addition of extra water to enhance the workability of GPC matrix caused a decrease in the compressive strength. The validity of the equations suggested by previous studies to estimate the tensile and flexural strength and elastic modulus of FS-GPC mixes were also evaluated. Based on the test results of this study, empirical equations are proposed to predict the splitting tensile strength, flexural strength, and elastic modulus of ambient cured FS-GPC. The optimal mixtures of FS-GPC in terms of workability and mechanical properties were also proposed for the field applications.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 11
Author(s):  
Adrian-Victor Lăzărescu ◽  
Henriette Szilagyi ◽  
Cornelia Baeră ◽  
Andreea Hegyi

Current research and development policies in the field of building materials, in the context of sustainable development, have the main objectives of increasing the safety and performance of the built environment at the same time as reducing pollution and its negative impact. Today, the idea that the sustainable city of the future should meet human needs and maintain a higher quality of life is worldwide unanimously accepted. The aim of this paper is to present results regarding the production of alkali-activated fly ash-based geopolymer concrete, a new, alternative material, produced using local available raw materials from Romania.


Sign in / Sign up

Export Citation Format

Share Document